2015-04-03

Editor Note: Affordable and powerful 18650 battery cells are the hottest thing in the DIY electric bike revolution. Bike builders everywhere are discovering that clustering many 18650s together are an effective way to build not only an affordable pack, but one with unbeatable performance and safety. Note that even though they are safer than soft pouch LiPos (popular with RC enthusiasts), it is still a lithium chemistry, which is always dangerous when mis-handled (fire risk). Lithium pack-building is for advanced users only and should not be tried at home. Plenty of people quote that the Tesla EV uses 18650s, which is true…but the original ebike builders to use 18650s is the $14,000 Optibike which has been using 18650 packs before any other ebike builder.  The Following was submitted by Damian Rene, a DIY builder in Madrid Spain…thanks especially for the beautiful pics and video taken from Damians talented girlfriend Tania Netsvetaylova. IT was the video that really caught my eye and caused me to reach out to Damian to get him to write this story. I knew without seeing them the pictures were going to be beautiful as well and they were.



“When I started into building an EV, I realized soon that there was an accentuated performance gap between the 3 main components: Motors, controllers, and batteries. Motors and Controllers are pretty easy to source good ones that perform well at a decent price. However when looking for the third component, the battery back…you run into problems.  It is very hard to find decent ebike battery packs that will put out good performance at a reasonable price. All Cell packs for example puts out decent performance, but are too expensive. (read our article on commercialy available ebike battery packs).

Even if you save up the money and buy something like an All Cell pack (because it is using just decent quality 18650 cells) the pack itself does not have good energy density. Meaning it is large and heavy for the power it contains, and it only puts out 30 amps, which for me is not enough. With ebikes we often say you can have it fast, light weight, or cheap…but you can’t have all three. With lithium battery packs you can have cheap, high energy-density (small and light), or high amperage (fast) but you definitely can’t have all three…and sometimes you are lucky to find just one. So like with ebikes,  same with ebike battery packs, if you want the performance, lightweight, and low cost….you have to resort to building yourself.

So I started on my mission of building my own battery pack, which begins with tons of research on endless-sphere.com. Building a battery pack is serious business, not for newbies, and it must be taken seriously. Using a DIY lithum battery pack also takes a lot of common sense and knowlege. If a lithium ebike pack is not handled correctly, they can burst into flames. Of course catching your house or garage on fire is a topic that should not be taken lightly. Of course, I wanted to build my pack to be as safe as possible.

So I started figuring how different battery packs were made. I spent tons of time on Endless-Sphere. There is where I found the most valuable information about EV technical info that I could find anywhere on the Internet. About EV battery packs I found that they are made basically into groups of different types as cylindrical, prismatic (or pouch) cells, in a variety of serial and parallel configurations. (series gives higher voltage, parallel give more amp hours)

Soon I focused on packs made with the 18650 cell format. I found they were the safest, most manageable, and with a high energy density. These cells would make it possible to build the pack I desired. Also, it was possible for me to find high-quality 18650 cells for cheap.

So there was time for a deep search on how the major suppliers made their own packs. Cells are usually attached together with plastic holders that group them, and then spot welded with nickel strips to make the different parallel and serial configurations. Then I find that there was some home builds that had the cells glued together. This was the key I was looking that must let a battery being powerful at the minimum volume.



I discussed advantages and disadvantages of joining the cells with hot glue on the forums.

Some builders said to me that the space holders let air between the cells, and is necessary for cooling purposes. But I realized it was the opposite. When the cells are in contact, the heat is transmitted faster between their plastic covers than from cover to cover through air. So the heat travels faster to the exterior.

Also high heat would thaw the glue, but even in the summer, if the cells are attached together (making fast heat transition) and if the EV requirements and battery performance is counted, the heat will never be enough to affect the pack.

Another  issue is how do you exchange a single cell if one fails? One failed cell can ruin an entire pack.  Exchanging an 18650 cell is always difficult in any 18650 battery pack, because the cells need to be spot-welded with metal strips to secure the connections. So apart from removing the spot-welded strips it is still needed to also remove the glue.

The last huge issue to consider with any battery pack is the Battery Management System (BMS). The BMS is a cell manager which controls what the pack is doing and shuts down in case it senses anything is wrong. For example a BMS protects the battery from overcharging or undercharging…both of which can cause the battery pack to fail or worse…burst into flames. The problem with a BMS is its very hard to find a good one available that fits the size of the pack I plan to build, it is expensive, and it is hard to assemble. Most commercially available packs have a BMS and it is the recommended way to go for ultimate safety and reliability.

As an experienced DIY, I decided I can safely go without a BMS because of my knowledge. Basically I use a Cycle Analyst and a high quality smart charger for my BMS. Meaning the Cycle Analyst lets me know the voltage of the pack when I am riding and shuts down the power if I forget and lets me know if my packs voltage is dropping too low…Similarly, the smart charger makes sure my pack does not get charged over the allowed voltage. Charging cannot safely be done unsupervised on a DIY pack such as mine without a BMS…and if it is, it should be done somewhere in an outdoor barbecue for safety. Sounds ridiculous…but that is the downside to DIY. Especially for newcomers to electric bikes, a good BMS is essential for fire safety!!

Ok so now you know some of the disadvantages and problems associated with a DIY pack. The advantages are that the energy density and specific energy reaches unbeatable values for a very affordable price…especially in my case using recycled cells.

So I get the equipment (spot welder, nickel strips, BMS, battery shrink wrap, hot glue, some instruments and tools) and the 18650 cells I could bought at a good reasonable price (they came from Bosch rejected welded packs), and I started to make a 13S / 15P, 48V 42-Ah pack that later would give the very interesting performance of a max range of 300 Kilometers (186 miles) at 35-MPH on an EV made for the tests (that’s another Story). All in a pack that is below 10Kg (22.7 lbs) with this dimensions: 420mm x 144mm x 67mm.



Please watch the video that my wonderful girlfriend Tania (a filmmaker) made documenting my battery pack build…it is a good illustration of what it takes to make a 18650 DIY pack.  Again, do not try this at home without serious research and knowledge. This article is not meant as a how-to guide…but more to show you what is possible if you do your homework”

Damián René & Tania Netsvetaylova From Madrid, Spain.

More pictures for your viewing pleasure:

Spot-welding the first parallel group

The spot-welding connected many nickel strips. A thin connection would get hot from the current, so a thicker connection between the cells would run cooler.

Preparing to connect the first parallel group to the second group. Notice the hot-glue between the cells to hold them together. The parallel cell group on the right will be flipped over so the positive ends of the group on the left will be connected to the negative ends of the group on the right.

A close-up of the two spot-welding probes.

Two rows of positive ends on the left…connected to two rows of negative ends, then positive, then negative again. If he stopped building it here, it would be a 4S / 15P pack

Here, all 13 series groups are finally connected. Each parallel group has had a thin wire connected to each positive and negative end of it. Doing this will allow for the option of balance-charging each parallel group individually (if desired)

New 18650 lithium cells are shipped with a 1/2 charge, which is the best for long-term storage health. Notice that if there are 13 series groups, the 40V shown means each cell is approximately at 3.0V per cell.

Very large diameter heat shrink sleeves can be ordered cheaply in a variety of sizes.

After testing a few times, the pack voltage is down to 36V.

If charging is done at a 5A rate, the large plug shown is much larger than necessary, but if the pack can provide a current level of  60A (like this one), the connector between the battery and controller must be large enough to ensure it doesn’t overheat.

When I read that Damian was using 60A peaks on a hub motor, I knew it had to be a direct-drive. Here, he is showing the colored LEDs that he installed for night-riding.

______________________________________________

Written by Eric, April 2015

Show more