To see the challenge facing the network infrastructure industry, I have to look no farther than the Apple Watch I wear on my wrist.
That new device is a symbol of the change that is challenging the telecommunications industry. This wearable technology is an example of the leading edge of the next phase of the digital service economy, where information technology becomes the basis of innovation, services and new business models.
I had the opportunity to share a view on the end-to-end network transformation needed to support the digital service economy recently with an audience of communications and cloud service providers during my keynote speech at the Big Telecom Event.
These service providers are seeking to transform their network infrastructure to meet customer demand for information that can help grow their businesses, enhance productivity and enrich their day-to-day lives. Compelling new services are being innovated at cloud pace, and the underlying network infrastructure must be agile, scalable, and dynamic to support these new services.
The operator’s challenge is that the current network architecture is anchored in purpose-built, fixed function equipment that is not able to be utilized for anything other than the function for which it was originally designed. The dynamic nature of the telecommunications industry means that the infrastructure must be more responsive to changing market needs. The challenge of continuing to build out network capacity to meet customer requirements in a way that is more flexible and cost-effective is what is driving the commitment by service providers and the industry to transform these networks to a different architectural paradigm anchored in innovation from the data center industry.
Network operators have worked with Intel to find ways to leverage server, cloud, and virtualization technologies to build networks that cost less to deploy, giving consumers and business users a great experience, while easing and lowering their cost of deployment and operation.
Transformation starts with reimagining the network
This transformation starts with reimagining what the network can do and how it can be redesigned for new devices and applications, even including those that have not yet been invented. Intel is working with the industry to reimagine the network using Network Functions Virtualization (NFV) and Software Defined Networking (SDN).
For example, the evolution of the wireless access network from macro basestations to a heterogeneous network or “HetNet”, using a mix of macro cell and small cell base-stations, and the addition of mobile edge computing (MEC) will dramatically improve network efficiency by providing more efficient use of spectrum and new radio-aware service capabilities. This transformation will intelligently couple mobile devices to the access network for greater innovation and improved ability to scale capacity and improve coverage.
In wireline access, virtual customer premises equipment moves service provisioning intelligence from the home or business to the provider edge to accelerate delivery of new services and to optimize operating expenses. And NFV and SDN are also being deployed in the wireless core and in cloud and enterprise data center networks.
This network transformation also makes possible new Internet of Things (IoT) services and revenue streams. As virtualized compute capabilities are added to every network node, operators have the opportunity to add sensing points throughout the network and tiered analytics to dynamically meet the needs of any IoT application.
One example of IoT innovation is safety cameras in “smart city” applications. With IoT, cities can deploy surveillance video cameras to collect video and process it at the edge to detect patterns that would indicate a security issue. When an issue occurs, the edge node can signal the camera to switch to high-resolution mode, flag an alert and divert the video stream to a central command center in the cloud. With smart cities, safety personnel efficiency and citizen safety are improved, all enabled by an efficient underlying network infrastructure.
NFV and SDN deployment has begun in earnest, but broad-scale deployment will require even more innovation: standardized, commercial-grade solutions must be available; next-generation networks must be architected; and business processes must be transformed to consume this new paradigm. Intel is investing now to lead this transformation and is driving a four-pronged strategy anchored in technology leadership: support of industry consortia, delivery of open reference designs, collaboration on trials and deployments, and building an industry ecosystem.
The foundation of this strategy is Intel’s role as a technology innovator. Intel’s continued investment and development in manufacturing leadership, processor architecture, Ethernet controllers and switches, and optimized open source software provide a foundation for our network transformation strategy.
Open standards are a critical to robust solutions, and Intel is engaged with all of the key industry consortia in this industry, including the European Telecommunications Standards Institute (ETSI), Open vSwitch, Open Daylight, OpenStack, and others. Most recently, we dedicated significant engineering and lab investments to the Open Platform for NFV’s (OPNFV) release of OPNFV Arno, the first carrier-grade, open source NFV platform.
The next step for these open source solutions is to be integrated with operating systems and other software into open reference software to provide an on-ramp for developers into NFV and SDN. That’s what Intel is doing with our Open Network Platform (ONP); a reference architecture that enables software developers to lower their development cost and shorten their time to market. The innovations in ONP form the basis of many of our contributions back to the open source community. In the future, ONP will be based on OPNFV releases, enhanced by additional optimizations and proofs-of-concept in which we continue to invest.
We also are working to bring real-world solutions to market and are active in collaborating on trials and deployments and deeply investing in building an ecosystem that brings companies together to create interoperable solutions.
As just one example, my team is working with Cisco Systems on a service chaining proof of concept that demonstrates how Intel Ethernet 40GbE and 100GbE controllers, working with a Cisco UCS network, can provide service chaining using network service header (NSH). This is one of dozens of PoCs that Intel has participated in in just this year, which collectively demonstrate the early momentum of NFV and SDN and its potential to transform service delivery.
A lot of our involvement in PoCs and trials comes from working with our ecosystem partners in the Intel Network Builders. I was very pleased to have had the opportunity to share the stage with Martin Bäckström and announce that Ericsson has joined Network Builders. Ericsson is an industry leader and innovator, and their presence in Network Builders demonstrates a commitment to a shared vision of end-to-end network transformation.
The companies in this ecosystem are passionate software and hardware vendors, and also end users, that work together to develop new solutions. There are more than 150 Network Builder members taking advantage of this program and driving forward with a shared vision to accelerate the availability of commercial grade solutions.
NFV and SDN are deploying now - but that is just the start of the end-to-end network transformation. There is still a great deal of technology and business innovation required to drive NFV and SDN to scale, and Intel will continue its commitment to drive this transformation.
I invited the BTE audience – and I invite you – to join us in this collaboration to create tomorrow’s user experiences and to lay the foundation for the next phase of the digital services economy.
Read more >
The post How End-To-End Network Transformation Fuels the Digital Service Economy appeared first on Blogs@Intel.