2012-08-24

Sodium chloride, better known as salt, is vital for the organism, and the kidneys play a crucial role in the regulation of sodium balance. However, the underlying mechanisms of sodium balance are not yet completely understood. Researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Charité - Universitätsmedizin Berlin and the University of Kiel have now deciphered the function of a gene in the kidney and have thus gained new insights into this complex regulation process (PNAS Early Edition, doi/10.1073/pnas.1203834109)*.

In humans, the kidneys filter around 1700 liters of blood every day, of which 180 liters are collected as primary urine and ultimately one to two liters of urine are excreted. The kidneys thus wash toxic waste products out of the body, but retain some useful substances and reintroduce them into the body, thus simultaneously regulating the salt and water balance.

Molecular velcro

In the study just published by Dr. Tilman Breiderhoff, Prof. Thomas Willnow (both MDC), as well as Dr. Nina Himmerkus and Prof. Markus Bleich (both of the University of Kiel) and Dr. Dominik Müller (Charité) the focus is on the claudin-10 gene, which is expressed in a specific segment of the kidney, in Henle's loop. In the thick ascending limb of this loop, , a large part of the filtered sodium chloride, as well as calcium and magnesium are reabsorbed. The gene product under investigation, the claudin 10 protein, belongs to a family of proteins that connect the epithelial cells which cover the inner and outer surfaces of the body and stick them together like velcro. Claudins, however, also form pores, through which ions and substances are transported between the cells.

Show more