Fabrication of patterns with linewidths down to 1.5nm
Researchers at aBeam Technologies, Lawrence Berkeley National Laboratory and Argonne National Laboratory have developed a technology to fabricate test patterns with a minimum linewidth down to 1.5nm. The fabricated nanostructures are used to test metrological equipment. The designed patterns involve thousands of lines with precisely designed linewidths; these lines are combined in such a way that the distribution of linewidths appears to be random at any location. This pseudo- random test pattern allows nanometrological systems to be characterized over their entire dynamic range.
The test pattern contains alternating lines of silicon and silicon-tungsten, this results in a pretty good contrast in the metrological systems. The size of the sample is fairly large, apprx. 6×6 microns, and involves thousands of lines, each according to its designed width. Earlier, aBeam and LBNL reported the capability of fabricating 4nm lines and spaces using e-beam lithography, atomic layer deposition, and nanoimprint.
Dr. Sergey Babin, president of aBeam Technologies said, “The semiconductor industry is moving toward a half-pitch of 11nm and 7nm. Therefore, metrology equipment should be very accurate, at least one order of magnitude more accurate than that. The characterization of metrology systems requires test patterns at a scale one order smaller than the measured features. The fabrication was a challenge, especially for such a complex pattern as a pseudo-random design, but we succeeded.”
Dr. Valeriy Yashchuk, a researcher at the Advanced Light Source of LBNL continued: “When you measure anything, you have to be sure that your metrological system produces accurate results, otherwise what kind of results will you get, nobody knows. Qualifying and tuning metrology systems at the nanoscale is not easy. We designed the test pattern that is capable of characterizing nano-metrology systems over their entire dynamic range, resulting in the modulation transfer function, the most comprehensive characteristic of any system.”
The test pattern is to be used to characterize almost any nano-metrology system. Experiments were performed using a scanning electron microscope (SEM), atomic force microscope (AFM), and soft x-ray microscopes. A part of an ideal test-sample and its SEM microscopy image is shown below. The image includes imperfection in the microscope and needs to be characterized.
The power spectral density of the sample is flat; the spectra of the image has a significant cut-off at high frequencies; this is used to characterize the microscope over its dynamic range and show the degradation of the microscope’s sensitivity as soon as the linewidth becomes smaller.
New method allows for greater variation in band gap tunability
If you can’t find the ideal material, then design a new one.
Northwestern University’s James Rondinelli uses quantum mechanical calculations to predict and design the properties of new materials by working at the atom-level. His group’s latest achievement is the discovery of a novel way to control the electronic band gap in complex oxide materials without changing the material’s overall composition. The finding could potentially lead to better electro-optical devices, such as lasers, and new energy-generation and conversion materials, including more absorbent solar cells and the improved conversion of sunlight into chemical fuels through photoelectrocatalysis.
“There really aren’t any perfect materials to collect the sun’s light,” said Rondinelli, assistant professor of materials science and engineering in the McCormick School of Engineering. “So, as materials scientists, we’re trying to engineer one from the bottom up. We try to understand the structure of a material, the manner in which the atoms are arranged, and how that ‘genome’ supports a material’s properties and functionality.”
The electronic band gap is a fundamental material parameter required for controlling light harvesting, conversion, and transport technologies. Via band-gap engineering, scientists can change what portion of the solar spectrum can be absorbed by a solar cell, which requires changing the structure or chemistry of the material.
Current tuning methods in non-oxide semiconductors are only able to change the band gap by approximately one electronvolt, which still requires the material’s chemical composition to become altered. Rondinelli’s method can change the band gap by up to 200 percent without modifying the material’s chemistry. The naturally occurring layers contained in complex oxide materials inspired his team to investigate how to control the layers. They found that by controlling the interactions between neutral and electrically charged planes of atoms in the oxide, they could achieve much greater variation in electronic band gap tunability.
“You could actually cleave the crystal and, at the nanometer scale, see well-defined layers that comprise the structure,” he said. “The way in which you order the cations on these layers in the structure at the atomic level is what gives you a new control parameter that doesn’t exist normally in traditional semiconductor materials.”
By tuning the arrangement of the cations–ions having a net positive, neutral, or negative charge–on these planes in proximity to each other, Rondinelli’s team demonstrated a band gap variation of more than two electronvolts. “We changed the band gap by a large amount without changing the material’s chemical formula,” he said. “The only difference is the way we sequenced the ‘genes’ of the material.”
Supported by DARPA and the US Department of Energy, the research is described in the paper “Massive band gap variation in layered oxides through cation ordering,” published in the January 30 issue of Nature Communications. Prasanna Balachandran of Los Alamos National Laboratory in New Mexico is coauthor of the paper.
Arranging oxide layers differently gives rise to different properties. Rondinelli said that having the ability to experimentally control layer-by-layer ordering today could allow researchers to design new materials with specific properties and purposes. The next step is to test his computational findings experimentally.
New pathway to valleytronics
A potential avenue to quantum computing currently generating quite the buzz in the high-tech industry is “valleytronics,” in which information is coded based on the wavelike motion of electrons moving through certain two-dimensional (2D) semiconductors. Now, a promising new pathway to valleytronic technology has been uncovered by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab).
Feng Wang, a condensed matter physicist with Berkeley Lab’s Materials Sciences Division, led a study in which it was demonstrated that a well-established phenomenon known as the “optical Stark effect” can be used to selectively control photoexcited electrons/hole pairs – referred to as excitons -in different energy valleys. In valleytronics, electrons move through the lattice of a 2D semiconductor as a wave with two energy valleys, each valley being characterized by a distinct momentum and quantum valley number. This quantum valley number can be used to encode information when the electrons are in a minimum energy valley. The technique is analogous to spintronics, in which information is encoded in a quantum spin number.
“This is the first demonstration of the important role the optical Stark effect can play in valleytronics,” Feng says. “Our technique, which is based on the use of circularly polarized femtosecond light pulses to selectively control the valley degree of freedom, opens up the possibility of ultrafast manipulation of valley excitons for quantum information applications.”
Wang, who also holds an appointment with the University of California (UC) Berkeley Physics Department, has been working with the 2D semiconductors known as MX2 materials, monolayers consisting of a single layer of transition metal atoms, such as molybdenum (Mo) or tungsten (W), sandwiched between two layers of chalcogen atoms, such as sulfur (S). This family of atomically thin 2D semiconductors features the same hexagonal “honeycombed” lattice as graphene. Unlike graphene, however, MX2 materials have natural energy band-gaps that facilitate their use in transistors and other electronic devices.
This past year, Wang and his group reported the first experimental observation of ultrafast charge transfer in photo-excited MX2 materials. The recorded charge transfer time of less than 50 femtoseconds established MX2 materials as competitors with graphene for future electronic devices. In this new study, Wang and his group generated ultrafast and ultrahigh pseudo-magnetic fields for controlling valley excitons in triangular monolayers of WSe2 using the optical Stark effect.
“The optical Stark effect describes the energy shift in a two-level system induced by a non-resonant laser field,” Wang says.
“Using ultrafast pump-probe spectroscopy, we were able to observe a pure and valley-selective optical Stark effect in WSe2 monolayers from the non-resonant pump that resulted in an energy splitting of more than 10 milli-electron volts between the K and K? valley exciton transitions. As controlling valley excitons with a real magnetic field is difficult to achieve even with superconducting magnets, a light-induced pseudo-magnetic field is highly desirable.”
Like spintronics, valleytronics offer a tremendous advantage in data processing speeds over the electrical charge used in classical electronics. Quantum spin, however, is strongly linked to magnetic fields, which can introduce stability issues. This is not an issue for quantum waves.
“The valley-dependent optical Stark effect offers a convenient and ultrafast way of enabling the coherent rotation of resonantly excited valley polarizations with high fidelity,” Wang says. “Such coherent manipulation of valley polarization should open up fascinating opportunities for valleytronics.”