2016-09-21

Stephen Smith, MD, an emergency medicine physician at Hennepin County Medical Center in Minnesota, is passionate about using electrocardiograms to save lives. He even writes a blog called Dr. Smith’s ECG Blog to train others to more accurately interpret them.

If you’re one of the 735,000 Americans who had a heart attack in the last year, you almost certainly had your heart evaluated with an electrocardiogram, or ECG for short, as soon as you were brought into the emergency room. The heart produces small electrical impulses with each beat, which cause the heart muscle to contract and pump blood throughout your body. The ECG records this electrical activity using electrodes placed on the skin, allowing physicians to detect abnormal heart rhythms and heart muscle damage.

On the surface, an ECG just produces a simple line graph based on technology that was invented over a century ago. So why does it still play such a vital role? And how can a physician diagnose a heart condition from a little blip on the line? I recently spoke with Smith, who is also a professor affiliated with the University of Minnesota Twin Cities, about his blog and his interest in ECGs.

How do you use ECGs in your medical practice?

I work full time as an emergency medicine physician and see thousands of patients per year. In the emergency room, the ECG is the first test that we use on everyone with chest pain because it’s the easiest, most non-invasive and cheapest cardiac test. Most of the time when someone is having a big heart attack (myocardial infarction), the ECG will show it. So this is all about patient care. It’s a really amazing diagnostic tool.

Why did you start your blog?

Every day I use ECGs to improve the care of my patients, but the purpose of my blog is to help other people do so too. I write it for cardiologists, cardiologist fellows, emergency medicine physicians, internal medicine physicians and paramedics — anyone who has to record and interpret ECGs — in order to improve their training and expertise. It’s easy to interpret a completely normal ECG, but many physicians fail to look at all aspects of the ECG together and many abnormalities go unrecognized. Reading ECGs correctly requires a lot of training.

For instance, one of my most popular blog posts presented the case of a 37-year-old woman with chest pain after a stressful interpersonal conflict. She was a non-smoker, with no hyperlipidemia and no family history of coronary artery disease. Her ECG showed an unequivocal, but extremely subtle, sign of a devastating myocardial infarction due to a complete closure of the artery supplying blood oxygen to the front wall of the heart. Her blood testing for a heart attack didn’t detect it, so she was discharged and died at home within 12 hours. It was a terrible outcome, but it demonstrates how training caregivers to recognize these subtle findings on the ECG can mean the difference between life and death.

I get very excited when I see an unusual ECG, and I see several every day. In 2008, I started posting these subtle ECG cases online and, to my surprise, people all over the world became interested in my blog. In July, I had 280,000 visits to my blog and about 90,000 visits to my Facebook page. People from 190 countries are viewing and learning from my posts. And I get messages from all over the world saying how nice it is to have free access to such a high-quality educational tool. I spend about eight hours per week seeking out interesting ECG cases, writing them up and answering questions on my blog, Facebook and Twitter.

Will ECGs ever be obsolete?

I don’t think ECGs will ever be outdated, because there is so much information that can be gleaned from them. We’re also improving how to interpret them. The main limitation is having good data on the underlying physiology for each ECG, which can be fed into an artificial intelligence computer algorithm. An AI could learn many patterns that we don’t recognize today.

Right now I’m working with a startup company in France. They’re a bunch of genius programmers who are creating neural network artificial intelligence software. We’re basically training the computer to read ECGs better. We need many, many good data sets to train the AI. I’ve already provided the company with over 100,000 ECGs along with their associated cardiologist or emergency medicine physician interpretations. We’re in the process of testing the AI against experts and against other computer algorithms.

My only role is to help direct the research. I receive no money from the company and have no financial interests. But I do have an interest in making better ECG algorithms for better patient care.

Previously: Honoring doctors, nurses of the early days of Stanford’s coronary care unit, New test could lead to increase of women diagnosed with heart attack and Enlisting artificial intelligence to assist radiologist

Photo by PublicDomainPictures

Show more