2015-04-06

‎Example:

← Older revision

Revision as of 18:39, 6 April 2015

(One intermediate revision by one user not shown)

Line 14:

Line 14:



Explained by the Wikipedia at http://en.wikipedia.org/wiki/Wireless_mesh_network

+

'''1.
Explained by the Wikipedia
'''
at http://en.wikipedia.org/wiki/Wireless_mesh_network

Line 21:

Line 21:

"This type of Internet infrastructure is decentralized, relatively inexpensive, and very reliable and resilient, as each node need only transmit as far as the next node. Nodes act as repeaters to transmit data from nearby nodes to peers that are too far away to reach, resulting in a network that can span large distances, especially over rough or difficult terrain. Mesh networks are also extremely reliable, as each node is connected to several other nodes. If one node drops out of the network, due to hardware failure or any other reason, its neighbours simply find another route. Extra capacity can be installed by simply adding more nodes. Mesh networks may involve either fixed or mobile devices. The solutions are as diverse as communications in difficult environments such as emergency situations, tunnels and oil rigs to battlefield surveillance and high speed mobile video applications on board public transport or real time racing car telemetry. The best mobile networks are those that provide a seamless handover between the mobile device and the fixed infrastructure points."

"This type of Internet infrastructure is decentralized, relatively inexpensive, and very reliable and resilient, as each node need only transmit as far as the next node. Nodes act as repeaters to transmit data from nearby nodes to peers that are too far away to reach, resulting in a network that can span large distances, especially over rough or difficult terrain. Mesh networks are also extremely reliable, as each node is connected to several other nodes. If one node drops out of the network, due to hardware failure or any other reason, its neighbours simply find another route. Extra capacity can be installed by simply adding more nodes. Mesh networks may involve either fixed or mobile devices. The solutions are as diverse as communications in difficult environments such as emergency situations, tunnels and oil rigs to battlefield surveillance and high speed mobile video applications on board public transport or real time racing car telemetry. The best mobile networks are those that provide a seamless handover between the mobile device and the fixed infrastructure points."

(http://en.wikipedia.org/wiki/Wireless_mesh_network)

(http://en.wikipedia.org/wiki/Wireless_mesh_network)

+

+

+

'''2.'''

"In basic terms, the mesh provides an alternative to established methods of linking computers together and connecting them to the internet. In practice, it can be used to build large networks far more quickly and cheaply than has previously been possible. As a result, wireless networks are viable in unexpected places. New Orleans, still without a phone service after Hurricane Katrina, recently began building a free, citywide network using mesh technology, while the whole of Macedonia is now one big wireless hotspot. Networks are also providing web connections to people in the parts of the UK untouched by phone-based broadband, as well as in developing countries that have never had effective telephone networks".

"In basic terms, the mesh provides an alternative to established methods of linking computers together and connecting them to the internet. In practice, it can be used to build large networks far more quickly and cheaply than has previously been possible. As a result, wireless networks are viable in unexpected places. New Orleans, still without a phone service after Hurricane Katrina, recently began building a free, citywide network using mesh technology, while the whole of Macedonia is now one big wireless hotspot. Networks are also providing web connections to people in the parts of the UK untouched by phone-based broadband, as well as in developing countries that have never had effective telephone networks".

(from Times Online, quoted by http://www.smartmobs.com/archive/2006/01/28/wireless_mesh_n.html)

(from Times Online, quoted by http://www.smartmobs.com/archive/2006/01/28/wireless_mesh_n.html)

+

+

+

'''3. Jason Tashea:'''

+

+

"A mesh network creates reliable and redundant wireless internet access. Instead of relying on a wired access point to the internet like a traditional network, a mesh network uses wireless radio nodes that speak to each other, thus creating decentralized wireless access points. Because a mesh network does not have to communicate through a central organization (like an ISP), if one node goes down the network will self heal — allowing service to continue without interruption.

+

+

You are probably wondering, how is this different than your WiFi at home? For one, mesh networks are actually wireless. If you think of your at-home wireless router, it is wired directly to the internet. Within a mesh network, only one node needs to be hardwired. All the other nodes, of which there could be hundreds, do not require direct access to the internet, just access to the mesh network itself. This allows a mesh network to operate without laying new cable, or as a local network during a service outage."

+

(http://technical.ly/2015/04/06/12-communities-experimenting-mesh-networks/)

=Example=

=Example=

Line 55:

Line 66:

The resulting ’firmware’, developed by a small team of volunteers, manages bandwidth allocation in order to maintain an equal flow of data throughout a wireless network; Regardless of network size, traffic, or the relative locations of two communicating points, data will be exchanged with equal priority.

The resulting ’firmware’, developed by a small team of volunteers, manages bandwidth allocation in order to maintain an equal flow of data throughout a wireless network; Regardless of network size, traffic, or the relative locations of two communicating points, data will be exchanged with equal priority.



A flexible ’mesh’ networking arrangement (many nodes connecting to many neighbour nodes) invests control of the network in the end devices, not an additional layer. By sharing technology and experiences, several Freifunk networks were established in Berlin. These were connected through wireless links known as the Berlin Backbone (BBB). Although the linked networks continued to operate independently, the BBB could be seen as an administrative layer which takes control away from end devices, whilst enhanced possibilities for local audio and video applications such as free radio, internet telephony and webTV advance the case for uncensored data and net neutrality. Freifunk’s social aim has been to strengthen existing organization and to develop e-democracy and grass roots structures appropriate to the digital era. Balances between social and technical participation in Freifunk networks is achieved by the absence of privileged nodes; horizontalism remains built in the network, whilst the hobbyist aspect of the organization keeps the network free to use and free of commercial interests. A diversity of participants and agendas is maintained through router firmware designed to put control with users." (http://ditch.org.uk/download/commons_wireless_autonomy.pdf)

+

A flexible ’mesh’ networking arrangement (many nodes connecting to many neighbour nodes) invests control of the network in the end devices, not an additional layer. By sharing technology and experiences, several Freifunk networks were established in Berlin. These were connected through wireless links known as the Berlin Backbone (BBB). Although the linked networks continued to operate independently, the BBB could be seen as an administrative layer which takes control away from end devices, whilst enhanced possibilities for local audio and video applications such as free radio, internet telephony and webTV advance the case for uncensored data and net neutrality. Freifunk’s social aim has been to strengthen existing organization and to develop e-democracy and grass roots structures appropriate to the digital era. Balances between social and technical participation in Freifunk networks is achieved by the absence of privileged nodes; horizontalism remains built in the network, whilst the hobbyist aspect of the organization keeps the network free to use and free of commercial interests. A diversity of participants and agendas is maintained through router firmware designed to put control with users." (http://ditch.org.uk/download/commons_wireless_autonomy.pdf)

+

+

+

==Twelve [[Community Wireless Networks]] in the U.S.A.==

+

+

Jason Tashea:

+

+

Here are 12 community mesh networks around the U.S. we checked up on:

+

+

Redhook Wifi, Brooklyn

+

+

In 2013, when we last checked in, Redhook Wifi had just been tested by Hurricane Sandy. Tony Schloss, the director of community initiatives, gave us an update: “It is clear that having a locally controlled and maintained network is critical in those emergency situations.” However, in non-emergency moments, Schloss questions the overarching value of the mesh network because so many users pay for internet access. No matter how residents connect to the internet, Schloss thinks education is critical. Building off of the Digital Stewards program (see Detroit below), Schloss says their work is ultimately about “creating real opportunities for the young adult participants in career options, social capital, and attitude shifts in their confidence regarding tech.”

+

+

+

BBamboowifi, Philadelphia

+

+

Bamboowifi is a wireless internet service provider that operates through a mesh network. Back in January, we reported on Bamboowifi and its then-upcoming Kickstarter campaign. After just a few months, cofounder David Platt already has lessons to share. “General interest has been overwhelmingly positive. Anyone we’ve spoken to about the concept seems very interested in our different approach to providing internet service,” said Platt. Even with this interest, the Kickstarter campaign and recruiting local businesses as hotspots has been slow. Platt believes that they need to build a pilot zone to make the concept concrete for potential partners. All the same, Platt continues to build their project and is looking to potential grant funders and investors to make Bamboowifi a reality.

+

+

SMesh, Baltimore

+

+

Fifteen years ago, SMesh sought to create something new: a seamless mesh network. When the project started at Johns Hopkins University, seamless transfer supporting VOIP, for instance, was not an omnipresent option like it is today. After significant experiments at Hopkins, and the development of less expensive technology, the SMesh program now lays dormant. Yair Amir, a Hopkins professor of computer science and member for the SMesh team, points out their code is still open and useable for anyone interested in their work. Amir is not bothered by the project’s passing, “We do research, some of it sticks and some of it doesn’t.” SMesh, he says, was a worthwhile experiment for its time, now his focus is on the next generation of internet services.

+

+

Meta Mesh, Pittsburgh

+

+

Meta Mesh and PittMesh got started in Pittsburgh’s South Side neighborhood. Their aim was to provide a local network that upheld privacy and freedom for its users. Their motivation for increased privacy became acute after it was revealed that the National Security Agency was collecting individual data through backdoors in traditional cloud services and ISPs. The Meta Mesh project requires that all traffic is encrypted. According to a video produced by Meta Mesh, they hope that interest from local innovators and “nerds” will help grow and improve the two-year-old network.

+

+

Digital Stewards, Detroit

+

+

The Digital Stewards project in Detroit is more than a mesh network — it’s a social movement. Born out of the Detroit Digital Justice Coalition, the mesh network is just one way they create equal access to media and technology. This work is particularly important in Detroit where a 2012 study reported that 40 percent of residents were without internet access. Beyond maintaining six networks around Detroit, they also developed a curriculum to improve digital literacy. This curriculum is being adopted around the world, including by Redhook Wifi (as mentioned in this article). For Diana Nucera, program director of the Detroit Community Technology Project, it is all about access, no matter where you get it. Nucera points potential mesh network advocates to Commotion’s setup wizard. “You don’t need a B.A. in Information Technology to try out [a community mesh network],” she said.

+

+

NYCWireless, New York City

+

+

For Dana Spiegel and the folks at NYCWireless, creating a mesh network was about hacking new technology (in 2000) and bringing untapped value to community spaces. “We saw an opportunity to hack together a way to use internet access … to bring communities together into our shared spaces,” said Spiegel. Beyond public spaces, NYCWireless is also putting networks into older buildings. The nodes allow for approximation making implementation much easier than laying new wires. Looking forward, Spiegel is emboldened by Mayor Bill de Blasio’s interest in public internet. NYCWireless promises to be a strong voice advocating for an open and democratic internet.

+

+

Personal Telco, Portland, Oregon

+

+

After the 2000s dot-com bubble, Portland had a number of unemployed IT people looking for faster internet than what their at-home dialup allowed. Personal Telco wanted to leverage new wireless technology to fix this problem. In the beginning, the problem setting up this network was not the nascent technology, but the trees. The verdant Northwest’s tall evergreens would block the signal, making the network patchy. This challenge turned Personal Telco’s focus to urban (read: less treeful) parts of Portland. “Most of our networks today are stand alone hotspots that someone sponsors,” said Russel Senior at Personal Telco. Senior hopes that Personal Telco and the philosophy behind it will persuade public policy makers that Portland needs a publicly owned internet utility. So far, Russell says, this effort is a work in progress.

+

+

MileMesh, Hoboken, N.J.

+

+

Hoboken learned how weak the internet is the hard way. After Hurricane Sandy, the New Jersey community was frustrated by broken and unresponsive communications infrastructure. As a community organization MileMesh’s goal is simple: cover Hoboken with reliable connectivity. According to their Twitter account, they are just getting started: the first MileMesh node was launched less than a year ago. With a $3,000 grant from NYCWireless, the expectation is to expand throughout Hoboken’s 1.3 square miles. Anthony Townsend, founder of NYCWireless, told TechPresident that expanding mesh networks was not about a starting a company or a project, “We’re trying to start a movement.”

+

+

Wasabinet, St. Louis

+

+

Wasabinet started as an experiment. Cofounder Ben West explains: “We saw the inherent bottoms-up and all-inclusive spirit of a mesh network like Wasabinet as a natural companion to the bootstrapped cultural and economic revival already taking place [in the Cherokee Street community].” With initial support from the Incarnate Word Foundation, other St. Louis neighborhoods are reaching out to West and his partner, Minerva Lopez, to expand the mesh network footprint. For the time being, however, West is exploring solar-powered nodes to make Wasabinet reliable in a power outage.

+

+

TFA Wireless, Houston

+

+

Technology for All in Texas aims to close the digital divide for the underserved and vulnerable. Part of this mission, in partnership with Rice University, is TFA Wireless. Started in 2004 and based in Houston’s underserved East End, TFA Wireless has continued to expand. According to their website, by 2011 TFA Wireless had provided the first residential deployment of “Super WiFi,” a long-range, barrier-piercing wireless network. The partnership with Rice has allowed for study of high-impact, low-cost networks and the development of new health-sensing applications in an attempt to catch public health issues early.

+

+

Meshnet Project, Seattle

+

+

Just a couple of years ago Seattle did not have a mesh network. For Dan Ryan and his colleagues, this was an opportunity. Now, there are a few dozen nodes in Central Seattle and the Ballard neighborhood. On the security side, Meshnet is unique. They use cjdns, a networking protocol that requires that each computer verify itself cryptographically instead of using a single, public IP address. This level of encryption will continue as the project grows and adds cjdns for Android users. Ryan is excited about the project and thinks its value has not been tested yet. “It could potentially play a significant role in future natural disasters [if] traditional networks are nonfunctional,” he said.

+

+

La Cañada Wireless Association (LCWA), Santa Fe

+

The La Cañada De Los Alamos Land Grant area outside of Santa Fe, New Mexico is rural. According to the 2010 census, 434 people lived there. Locally owned and operated by its members, this project provides low-cost internet in an area with lacking infrastructure. Instead of creating a mesh network that covers an entire geographic area, LCWA focuses its nodes to jump directly from an access point to a member’s home. According to their website, this allows an unobscured access point to reach a home up to ten miles away. While it is unclear if the LCWA is still fully functional, the model is none-the-less important to note, because it illustrates the application of mesh networks outside of urban areas."

+

(http://technical.ly/2015/04/06/12-communities-experimenting-mesh-networks/)

=Typology=

=Typology=

Show more