2016-11-16

Long-Term Cognitive Functioning in Single-Dose Total-Body Gamma-Irradiated Rhesus Monkeys (Macaca mulatta): Radiation Research, Volume 186, Issue 5, Page 447-454, November 2016.

Radiation Research 186(5):447-454. 2016
doi: http://dx.doi.org/10.1667/RR14430.1

Long-Term Cognitive Functioning in Single-Dose Total-Body Gamma-Irradiated Rhesus Monkeys (Macaca mulatta)



David B. Hanburya,d,1, Ann M. Peifferb,c,e, Greg Dugana, Rachel N. Andrewsa, andJ. Mark Clinea

Department of a Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina

b Department ofRadiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina

c Department of Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157

d Department of Psychology, Averett University, Danville, Virginia 24541

e Department of Psychology, Mars Hill University, Mars Hill, North Carolina 28754

1 Address for correspondence: Department of Psychology, Averett University, 420 West Main Street, Danville, VA 24541; email: dhanbury@averett.

edu.

In this study, the effects of a potentially lethal radiation exposure on the brain for long-term cognitive sequelae were investigated using Rhesus macaques (Macaca mulatta) adopted from other facilities after analysis of acute radiation response via the Centers for Medical Countermeasures against Radiation (CMCR) network. Fifty-nine animals were given the opportunity to participate in cognitive cage-side testing. The animals that received single-dose gamma irradiation were significantly less likely to engage in cognitive testing than the controls, suggesting that irradiated animals may have differences in cognitive ability. Five irradiated (6.75–8.05 Gy) and three naïve control animals self-selected, were extensively trained and administered a simple visual discrimination with reversal (SVD+R) task 2–3 times per week for 11–18 months. Each session consisted of 30 trials in which the animals were required to choose the correct visual stimulus for a food reward. After the initial presentation, the stimulus that signaled the presence of food was twice reversed once the animal reached criterion (90% accuracy across four consecutive sessions). While the limited sample size precluded definitive statistical analysis, irradiated animals took longer to reach the criterion subsequent to reversal than did control animals, suggesting a relative deficiency in cognitive flexibility. These results provide preliminary data supporting the potential use of a nonhuman primate model to study radiation-induced, late-delayed cognitive deficits.

Received: February 22, 2016; Accepted: July 15, 2016
;
Published: October 14, 2016

©2016 by Radiation Research Society.

REFERENCES

1. Bunn M. The risk of nuclear terrorism – and next steps to reduce the danger. Testimony of Matthew Bunn for the Committee on Homeland Security and Governmental Affairs, United States Senate, 2008. (http://bit.ly/2cA19wn)

2. Dietrich J, Monje M, Wefel J, Meyers C. Clinical patterns and biological correlates of cognitive dysfunction associated with cancer therapy. Oncologist2008; 13:1285–95. CrossRef, PubMed

3. Monje M. Cranial radiation therapy and damage to hippocampal neurogenesis. Dev Disabil Res Rev 2008; 14:238–42. CrossRef, PubMed

4. Doyle DM, Einhorn LH. Delayed effects of whole brain radiotherapy in germ cell tumor patients with central nervous system metastases. Int J Radiat Onc Biol Phys2008; 70:1361–4. CrossRef, PubMed

5. Szerlip N, Rutter C, Ram N, Yovino S, Kwok Y, Maggio W, et al. Factors impacting volumetric white matter changes following whole brain radiation therapy. J Neurooncol 2011; 103:111–9. CrossRef, PubMed

6. Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD.Radiation-induced brain injury: a review. Front Oncol 2012; 2:73. CrossRef,PubMed

7. Armstrong CL, Gyato K, Awadalla AW, Lustig R, Tochner ZA. A critical review of the clinical effects of therapeutic irradiation damage to the brain: the roots of controversy. Neuropsychol Rev 2004; 14:65–86. CrossRef, PubMed

8. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 7th ed. Philadelphia:Lippincott Williams & Wilkins; 2012.

9. Caveness WF. Pathology of radiation damage to the normal brain of the monkey. Natl Cancer Inst Monogr 1977; 46:57–76. PubMed

10. Bakken TE, Miller JA, Luo R, Bernard A, Bennett JL, Lee C-K, et al.Spatiotemporal dynamics of the postnatal developing primate brain transcriptome. Hum Mol Genet 2015; 24:4327–39. CrossRef, PubMed

11. Schmitt V, Pankau B, Fischer J. Old world monkeys compare to apes in the primate cognition test battery. PLoS One 2012; 7:e32024. CrossRef, PubMed

12. Shively CA, Clarkson TB. The unique value of primate models in translational research. Am J Primatol 2009; 71:715–21. CrossRef, PubMed

13. Nagahara AH, Bernot T, Tuszynski MH. Age-related cognitive deficits in rhesus monkeys mirror human deficits on an automated test battery. Neurobiol Aging2010; 31:1020–31. CrossRef, PubMed

14. Li W, Wu Y, Min F, Li Z, Huang J, Huang R. A nonhuman primate model of Alzheimer's disease generated by intracranial injection of amyloid-β42 and thiorphan. Metab Brain Dis 2010; 25:277–84. CrossRef, PubMed

15. Emborg ME. Nonhuman primate models of Parkinson's disease. ILAR J 2007; 48:339–55. CrossRef, PubMed

16. Willard SL, Shively CA. Modeling depression in adult female cynomolgus monkeys (Macaca fascicularis). Am J Primatol 2012; 74:528–42. CrossRef, PubMed

17. Roitberg BZ, Emborg ME, Sramek JG, Palfi S, Kordower JH. Behavioral and morphological comparison of two nonhuman primate models of Huntington's disease. Neurosurgery 2002; 50:137–46. PubMed

18. Blackman RK, MacDonald AW III, Chafee MV. Effects of ketamine on context-processing performance in monkeys: a new animal model of cognitive deficits in schizophrenia. Neuropsychopharmacology 2013; 38:2090–100. CrossRef, PubMed

19. Taffe MA, Weed MR, Gutierrez T, Davis SA, Gold LH. Modeling a task that is sensitive to dementia of the Alzheimer's type: individual differences in acquisition of a visuo-spatial paired-associate learning task in rhesus monkeys. Behav Brain Res 2004; 149:123–33. CrossRef, PubMed

20. Fukuda S, del Zoppo GJ. Models of focal cerebral ischemia in the nonhuman primate. ILAR J 2003; 44:96–104. CrossRef, PubMed

21. Howell LL, Murnane KS. Nonhuman primate neuroimaging and the neurobiology of psychostimulant addiction. Ann N Y Acad Sci 2008; 1141:176–94. CrossRef,PubMed

22. Kalin NH, Shelton SE. Nonhuman primate models to study anxiety, emotion regulation, and psychopathology. Ann N Y Acad Sci 2003; 1008:189–200.CrossRef, PubMed

23. Hanbury DB, Robbins ME, Bourland JD, Wheeler KT, Peiffer AM, Mitchell EL, et al. Pathology of fractionated whole-brain irradiation in rhesus monkeys (Macaca mulatta). Radiat Res 2015; 183:367–74. BioOne

24. Lonser RR, Walbridge A, Vortmeyer AO, Pack SD, Nguyen TT, Gogate N, et al.Induction of glioblastoma multiforme in nonhuman primates after therapeutic doses of fractionated whole-brain radiation therapy. J Neurosurg 2002; 97:1378–89.CrossRef, PubMed

25. Curran CR, Young RW, Davis WF. The performance of primates following exposure to pulsed whole-body gamma-neutron radiation. AFRRI Report No. SR73-1. Bethesda: Armed Forces Radiobiology Research Institute; 1973.

26. Turbyfill CL, Roudon RM, Kieffer VA. Behavior and physiology of the monkey (Macaca mulatta) following 2500 rads of pulsed mixed gamma-neutron radiation. Aerosp Med 1972; 43:41–5. PubMed

27. Weiss JF, Landauer MR. History and development of radiation-protective agents. Int J Radiat Biol 2009; 85:539–73. CrossRef, PubMed

28. Friedman HR, Selemon LD. Fetal irradiation interferes with adult cognition in the nonhuman primate. Biol Psychiatry 2010; 68:108–11. CrossRef, PubMed

29. Shaw EG, Robbins ME. Biological bases of radiation injury to the brain. In:Meyers CA, Perry JR, editors. Cognition and cancer. Cambridge: Cambridge University Press; 2008. p. 83–96.

30. Robbins ME, Bourland JD, Cline JM, Wheeler KT, Deadwyler SA. A model for assessing cognitive impairment after fractionated whole-brain irradiation in nonhuman primates. Radiat Res 2011; 175:519–25. BioOne

31. Shi L, Olson J, D'Agostino R Jr., Linville C, Nicolle MM, Robbins ME, et al. Aging masks detection of radiation-induced brain injury. Brain Res 2011; 1385:307–16.CrossRef, PubMed

32. Rapp PR. Visual discrimination and reversal learning in the aged monkey (Macaca mulatta). Behav Neurosci 1990; 104:876–84. CrossRef, PubMed

33. Zeamer A, Decamp E, Clark K, Schneider JS. Attention, executive functioning and memory in normal aged rhesus monkeys. Behav Brain Res 2011; 219:23–30.CrossRef, PubMed

34. Klanker M, Feenstra M, Denys D. Dopaminergic control of cognitive flexibility in humans and animals. Front Neurosci 2013; 7:201. CrossRef, PubMed

35. Schuitema I, de Sonneville L, Kaspers G, van der Pal H, Uyttebroeck A, van den Bos C, et al. Executive dysfunction 25 years after treatment with cranial radiotherapy for pediatric lymphoid malignancies. J Int Neuropsychol Soc 2015; 21:657–69. CrossRef, PubMed

36. Guide for the care and use of laboratory animals. 8th ed. Washington, D.C.:National Academies Press; 2011. (http://bit.ly/1nv823I)

37. Rutten K, Basile JL, Prickaerts J, Blokland A, Vivian JA. Selective PDE inhibitors rolipram and sildenafil improve object retrieval performance in adult cynomolgus macaques. Psychopharmacology 2008; 196:643–8. CrossRef, PubMed

38. Douw L, Klein M, Fagel SSAA, van den Heuvel J, Taphoorn MJB, Aaronson NK,et al. Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long term follow-up. Lancet Neurol 2009; 8:810–8. CrossRef, PubMed

39. Selemon LD, Friedman HR. Motor stereotypies and cognitive perseveration in non-human primates exposed to early gestational irradiation. Neuroscience 2013; 248:213–24. CrossRef, PubMed

40. Davis CM, DeCicco KL, Roma PG, Hienz RD. Individual differences in attentional deficits and dopaminergic protein levels following exposure to proton radiation. Radiat Res 2014; 181:258–71. BioOne

41. Naylor AS, Bull C, Nilsson MKL, Zhu C, Björk-Eriksson T, Eriksson PS, et al.Voluntary running rescues adult hippocampal neurogenesis after irradiation of the young mouse brain. Proc Natl Acad Sci U S A 2008; 105:14632–7. CrossRef,PubMed

42. Rola R, Raber J, Rizk A, Otsuka S, VandenBerg SR, Morhardt DR, et al.Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol 2004; 188:316–30. CrossRef, PubMed

43. Raber J, Rola R, LeFevour A, Morhardt D, Curley J, Mizumatsu S, et al.Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res 2004; 162:39–47. BioOne

Show more