2016-11-16

Late DNA Damage Mediated by Homologous Recombination Repair Results in Radiosensitization with Gemcitabine: Radiation Research, Volume 186, Issue 5, Page 466-477, November 2016.

Radiation Research 186(5):466-477. 2016
doi: http://dx.doi.org/10.1667/RR14443.1

Late DNA Damage Mediated by Homologous Recombination Repair Results in Radiosensitization with Gemcitabine



Michael M. Im, Sheryl A. Flanagan, Jeffrey J. Ackroyd, Brendan Knapp, Aaron Kramer, and Donna S. Shewach1

Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109

1 Address for correspondence: 4742 Medical Science II, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5633; email: dshewach@umich.

edu.

Gemcitabine (dFdCyd) shows broad antitumor activity in solid tumors in chemotherapeutic regimens or when combined with ionizing radiation (radiosensitization). While it is known that mismatches in DNA are necessary for dFdCyd radiosensitization, the critical event resulting in radiosensitization has not been identified. Here we hypothesized that late DNA damage (≥24 h after drug washout/irradiation) is a causal event in radiosensitization by dFdCyd, and that homologous recombination repair (HRR) is required for this late DNA damage. Using γ-H2AX as a measurement of DNA damage in MCF-7 breast cancer cells, we demonstrate that 10 or 80 nM dFdCyd alone produced significantly more late DNA damage compared to that observed within 4 h after treatment. The combination of dFdCyd treatment followed by irradiation did not produce a consistent increase in DNA damage in the first 4 h after treatment, however, there was a synergistic increase 24–48 h later relative to treatment with dFdCyd or radiation alone. RNAi suppression of the essential HRR protein, XRCC3, significantly decreased both radiosensitization and late DNA damage. Furthermore, inhibition of HRR with the Rad51 inhibitor B02 prevented radiosensitization when added after, but not during, treatment with dFdCyd and radiation. To our knowledge, this is the first published study to show that radiosensitization with dFdCyd results from a synergistic increase in DNA damage at 24–48 h after drug and radiation treatment, and that this damage and radiosensitization require HRR. These results suggest that tumors that overexpress HRR will be more vulnerable to chemoradiotherapy, and treatments that increase HRR and/or mismatches in DNA will enhance dFdCyd radiosensitization.

Received: March 1, 2016; Accepted: August 2, 2016
;
Published: October 14, 2016

©2016 by Radiation Research Society.

REFERENCES

1. Hidalgo M. Pancreatic cancer. N Engl J Med 2010; 362:1605–17. CrossRef,PubMed

2. Heinemann V. Role of gemcitabine in the treatment of advanced and metastatic breast cancer. Oncology 2003; 64:191–206. CrossRef, PubMed

3. Pilkington G, Boland A, Brown T, Oyee J, Bagust A, Dickson R. A systematic review of the clinical effectiveness of first-line chemotherapy for adult patients with locally advanced or metastatic non-small cell lung cancer. Thorax 2015; 70:359–67. CrossRef, PubMed

4. Shewach DS, Hahn TM, Chang E, Hertel LW, Lawrence TS. Metabolism of 2′,2′-difluoro-2′-deoxycytidine and radiation sensitization of human colon carcinoma cells. Cancer Res 1994; 54:3218–23. PubMed

5. Lee MW, Parker WB, Xu B. New insights into the synergism of nucleoside analogs with radiotherapy. Radiat Oncol 2013; 8:223. CrossRef, PubMed

6. Loehrer PJ, Sr., Feng Y, Cardenes H, Wagner L, Brell JM, Cella D, et al.Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: an Eastern Cooperative Oncology Group trial. J Clin Oncol 2011; 29:4105–12. CrossRef, PubMed

7. Suh WW, Schott AF, Hayman JA, Schipper MJ, Shewach DS, Pierce LJ. A phase I dose escalation trial of gemcitabine with radiotherapy for breast cancer in the treatment of unresectable chest wall recurrences. Breast J 2004; 10:204–10.CrossRef, PubMed

8. Alvarado-Miranda A, Arrieta O, Gamboa-Vignolle C, Saavedra-Perez D, Morales-Barrera R, Bargallo-Rocha E, et al. Concurrent chemo-radiotherapy following neoadjuvant chemotherapy in locally advanced breast cancer. Radiat Oncol 2009; 4:24. CrossRef, PubMed

9. Kerner GS, van Dullemen LF, Wiegman EM, Widder J, Blokzijl E, Driever EM, et al.Concurrent gemcitabine and 3D radiotherapy in patients with stage III unresectable non-small cell lung cancer. Radiat Oncol 2014; 9:190. CrossRef,PubMed

10. van Putten JW, Price A, van der Leest AH, Gregor A, Little FA, Groen HJ. APhase I study of gemcitabine with concurrent radiotherapy in stage III, locally advanced non-small cell lung cancer. Clin Cancer Res 2003; 9:2472–7. PubMed

11. Zhou J, Fang CX, Shen J, Schipper MJ, Zalupski MM, Minter RM, et al.Definitive chemoradiation with full-dose gemcitabine for unresectable pancreatic cancer: efficacy of involved-field radiotherapy. Am J Clin Oncol 2015. [Epub ahead of print]

12. Eisbruch A, Shewach DS, Bradford CR, Littles JF, Teknos TN, Chepeha DB, et al. Radiation concurrent with gemcitabine for locally advanced head and neck cancer: a phase I trial and intracellular drug incorporation study. JClinOncol 2001; 19:792–9.

13. Lawrence TS, Chang EY, Hahn TM, Hertel LW, Shewach DS. Radiosensitization of pancreatic cancer cells by 2′,2′-difluoro-2′-deoxycytidine. Int J Radiat Oncol Biol Phys 1996; 34:867–72. CrossRef, PubMed

14. Gregoire V, Beauduin M, Bruniaux M, De Coster B, Octave PM, Scalliet P.Radiosensitization of mouse sarcoma cells by fludarabine (F-ara-A) or gemcitabine (dFdC), two nucleoside analogues, is not mediated by an increased induction or a repair inhibition of DNA double-strand breaks as measured by pulsed-field gel electrophoresis. Int J Radiat Biol 1998; 73:511–20. CrossRef, PubMed

15. Rosier JF, Beauduin M, Bruniaux M, De Bast M, De Coster B, Octave-Prignot M,et al. The effect of 2′-2′ difluorodeoxycytidine (dFdC, gemcitabine) on radiation-induced cell lethality in two human head and neck squamous carcinoma cell lines differing in intrinsic radiosensitivity. Int J Radiat Biol 1999; 75:245–51. CrossRef,PubMed

16. Robinson BW, Shewach DS. Radiosensitization by gemcitabine in p53 wild-type and mutant MCF-7 breast carcinoma cell lines. Clin Cancer Res 2001; 7:2581–9.PubMed

17. Pauwels B, Korst AE, Pattyn GG, Lambrechts HA, Kamphuis JA, De Pooter CM,et al. The relation between deoxycytidine kinase activity and the radiosensitising effect of gemcitabine in eight different human tumour cell lines. BMC Cancer 2006; 6:142. CrossRef, PubMed

18. Ostruszka LJ, Shewach DS. The role of cell cycle progression in radiosensitization by 2′,2′-difluoro-2′-deoxycytidine. Cancer Res 2000; 60:6080–8.PubMed

19. Heinemann V, Hertel LW, Grindey GB, Plunkett W. Comparison of the cellular pharmacokinetics and toxicity of 2′,2′-difluorodeoxycytidine and 1-beta-D-arabinofuranosylcytosine. Cancer Res 1988; 48:4024–31. PubMed

20. Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W. Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res 1991; 51:6110–7. PubMed

21. Plunkett W, Huang P, Searcy CE, Gandhi V. Gemcitabine: preclinical pharmacology and mechanisms of action. SeminOncol 1996; 23:3–15.

22. Baker CH, Banzon J, Bollinger JM, Stubbe J, Samano V, Robins MJ, et al. 2′-Deoxy-2′-methylenecytidine and 2′-deoxy-2′,2′-difluorocytidine 5′-diphosphates: potent mechanism-based inhibitors of ribonucleotide reductase. J Med Chem 1991; 34:1879–84. CrossRef, PubMed

23. Ostruszka LJ, Shewach DS. The role of DNA synthesis inhibition in the cytotoxicity of 2′,2′-difluoro-2′-deoxycytidine. Cancer Chemother Pharmacol2003; 52:325–32. CrossRef, PubMed

24. Flanagan SA, Robinson BW, Krokosky CM, Shewach DS. Mismatched nucleotides as the lesions responsible for radiosensitization with gemcitabine: a new paradigm for antimetabolite radiosensitizers. Mol Cancer Ther 2007; 6:1858–68. CrossRef, PubMed

25. Robinson BW, Im MM, Ljungman M, Praz F, Shewach DS. Enhanced radiosensitization with gemcitabine in mismatch repair-deficient HCT116 cells. Cancer Res 2003; 63:6935–41. PubMed

26. Wachters FM, van Putten JW, Maring JG, Zdzienicka MZ, Groen HJ, Kampinga HH. Selective targeting of homologous DNA recombination repair by gemcitabine. Int J Radiat Oncol Biol Phys 2003; 57:553–62. CrossRef, PubMed

27. Im MM, Flanagan SA, Ackroyd JJ, Shewach DS. Drug metabolism and homologous recombination repair in radiosensitization with gemcitabine. Radiat Res2015; 183:114–23. BioOne

28. van Putten JWG, Groen HJM, Smid K, Peters GJ, Kampinga HH. End-joining deficiency and radiosensitization induced by gemcitabine. Cancer Res 2001; 61:1585–91. PubMed

29. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. JCell Biol 1999; 146:905–16.CrossRef, PubMed

30. Fertil B, Dertinger H, Courdi A, Malaise EP. Mean inactivation dose: a useful concept for intercomparison of human cell survival curves. Radiat Res 1984; 99:73–84. CrossRef, PubMed

31. Shewach DS. Quantitation of deoxyribonucleoside 5′-triphosphates by a sequential boronate and anion-exchange high-pressure liquid chromatographic procedure. Anal Biochem 1992; 206:178–82. CrossRef, PubMed

32. Flanagan SA, Krokosky CM, Mannava S, Nikiforov MA, Shewach DS. MLH1 deficiency enhances radiosensitization with 5-fluorodeoxyuridine by increasing DNA mismatches. Mol Pharmacol 2008; 74:863–71. CrossRef, PubMed

33. Lawrence TS, Chang EY, Hahn TM, Shewach DS. Delayed radiosensitization of human colon carcinoma cells after a brief exposure to 2′,2′-difluoro-2′-deoxycytidine (Gemcitabine). Clin Cancer Res 1997; 3:777–82. PubMed

34. Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 2012; 47:497–510. CrossRef, PubMed

35. Branzei D, Foiani M. Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 2008; 9:297–308. CrossRef, PubMed

36. Latz D, Fleckenstein K, Eble M, Blatter J, Wannenmacher M, Weber KJ.Radiosensitizing potential of gemcitabine (2′,2′-difluoro-2′-deoxycytidine) within the cell cycle in vitro. Int J Radiat Oncol Biol Phys 1998; 41:875–82. CrossRef,PubMed

37. Huang F, Mazina OM, Zentner IJ, Cocklin S, Mazin AV. Inhibition of homologous recombination in human cells by targeting RAD51 recombinase. J Med Chem 2012; 55:3011–20. CrossRef, PubMed

38. Russell JS, Brady K, Burgan WE, Cerra MA, Oswald KA, Camphausen K, et al.Gleevec-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity. Cancer Res 2003; 63:7377–83. PubMed

39. Frankenberg-Schwager M. Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cells. Radiat Environ Biophys 1990; 29:273–92. CrossRef, PubMed

40. Georgakilas AG, Bennett PV, Wilson DM, 3rd, Sutherland BM. Processing of bistranded abasic DNA clusters in gamma-irradiated human hematopoietic cells. Nucleic Acids Res 2004; 32:5609–20. CrossRef, PubMed

41. Engelke CG, Parsels LA, Qian Y, Zhang Q, Karnak D, Robertson JR, et al.Sensitization of pancreatic cancer to chemoradiation by the Chk1 inhibitor MK8776. Clin Cancer Res 2013; 19:4412–21. CrossRef, PubMed

42. Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice. Cell Res 2008; 18:134–47. CrossRef, PubMed

43. Tsai MS, Kuo YH, Chiu YF, Su YC, Lin YW. Down-regulation of Rad51 expression overcomes drug resistance to gemcitabine in human non-small-cell lung cancer cells. J Pharmacol Exp Ther 2010; 335:830–40. CrossRef, PubMed

44. Nakashima S, Kobayashi S, Nagano H, Tomokuni A, Tomimaru Y, Asaoka T, et al. BRCA/Fanconi anemia pathway implicates chemoresistance to gemcitabine in biliary tract cancer. Cancer Sci 2015; 106:584–91. CrossRef, PubMed

45. Jones RM, Kotsantis P, Stewart GS, Groth P, Petermann E. BRCA2 and RAD51 promote double-strand break formation and cell death in response to gemcitabine. Mol Cancer Ther 2014; 13:2412–21. CrossRef, PubMed

46. Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 1996; 65:101–33. CrossRef,PubMed

47. Amunugama R, Fishel R. Homologous recombination in eukaryotes. Prog Mol Biol Transl Sci 2012; 110:155–206. CrossRef, PubMed

48. Mao Z, Jiang Y, Liu X, Seluanov A, Gorbunova V. DNA repair by homologous recombination, but not by nonhomologous end joining, is elevated in breast cancer cells. Neoplasia 2009; 11:683–91. CrossRef, PubMed

49. Qiao GB, Wu YL, Yang XN, Zhong WZ, Xie D, Guan XY, et al. High-level expression of Rad51 is an independent prognostic marker of survival in non-small-cell lung cancer patients. Br J Cancer 2005; 93:137–43. CrossRef, PubMed

50. Klein HL. The consequences of Rad51 overexpression for normal and tumor cells. DNA Repair (Amst) 2008; 7:686–93. CrossRef, PubMed

51. Raderschall E, Stout K, Freier S, Suckow V, Schweiger S, Haaf T. Elevated levels of Rad51 recombination protein in tumor cells. Cancer Res 2002; 62:219–25.PubMed

52. Peltomaki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol 2003; 21:1174–9. CrossRef, PubMed

53. Martin SA, Lord CJ, Ashworth A. Therapeutic targeting of the DNA mismatch repair pathway. Clin Cancer Res 2010; 16:5107–13. CrossRef, PubMed

54. Kim JH, Alfieri AA, Kim SH, Fuks Z. The potentiation of radiation response on murine tumor by fludarabine phosphate. Cancer Lett 1986; 31:69–76. CrossRef,PubMed

55. Cariveau MJ, Stackhouse M, Cui XL, Tiwari K, Waud W, Secrist JA, III, et al.Clofarabine acts as radiosensitizer in vitro and in vivo by interfering with DNA damage response. Int J Radiat Oncol Biol Phys 2008; 70:213–20. CrossRef, PubMed

56. Shewach DS, Lawrence TS. Antimetabolite radiosensitizers. J Clin Oncol 2007; 25:4043–50. CrossRef, PubMed

Show more