2014-05-02

For those of you who are still new to here (less than 10 years on boards), I would like to refer one of the newest articles that I encountered which basically does a very good job summarizing a lot of the research, experimentation and findings which I have conducted throughout my whole life,

 

I can absolutely confirm and conclude that most, if not all, vegetables oil are intensely harmful to include in our diet and are one of the most anti-life and pro-aging substances that you can ingest, this includes even coconut oil, olive oil, and worse of all, - avocadoes ! I know that some of you here might say "Oh Gosh OH MY GOD, Not the Olive Oil" or "OMG Avocadoes, but but I have seen all these good studies and have been so very well brainwashed my marketing and media and "scientific circle" propaganda crap that I thought they were good !"

Any other studies that you can dig up on this now are quite irrelevant, - I HAVE SEEN IT ALL, and I Actually TESTED it all, unlike Most of people here who take most of these papers on blind-faith or should I say blind-foolishness and inexperience...  And seeming "intelligent" and "well-educated" will amount next to Nothing, if you are still Doing it Wrong .

 

But, Make No Mistake !

 

And after dissecting every single different fat out there, the fatty acids they are composed of, the foods that have it, and conducting Actual hands-on Experimentations with many many trials and errors, including and keeping track of All the variables in place And double-checking the results dozens of on times, studies consisting of more than 10 people And myself who have reported results to me almost daily and nearly a hundred or more occasionally, I can firmly and reliably tell you that Humans should stay far away from these vegetable oils as far as possible and ONLY Consume them when they HAVE TO TO SURVIVE and in Very Minute quantities(I'm mostly talking about fresh Avocadoes, they do have one of the nicest balances of all the mixed forms of Vitamin E of Any plant or seed or nuts, so you can eat Tiny bits of it only if you have NOTHING ELSE TO EAT AND STARVING or SEVERELY INFLAMMED, and only during short-term, taking breaks, they are EXTREMELY anti-aging and dehydrating to ALL our living Tissues, and they plug up the circulatory system like nothing else out there !!! Extreme anti-inflammation and dehydration of connective tissues and muscles will follow after long-term consumption .

 

I will also summarize all my findings and results up to this very day, and tell you that the BEST kind of Fats to consume daily is tiny bit of Unsalted Goat Butter (~20g a day should be alright), mixed into your favourite vegetable dishes AFTER they have been prepared AND cooled down to almost room temperature 

 

Cow's butter is Not recommended, I will keep things as simple and clear for you like this, because the Ultimate Truth is Simple and you have already enough junk floating in your head

 

Here is the newer article, and another one on Fish oil after that, which many of us should already be aware of !

 

 

"Unsaturated Vegetable Oils: Toxic

GLOSSARY:

Immunodeficiency (weakness of the immune system) can take many forms. AIDS, for example, refers to an immunodeficiency which is "acquired," rather than "inborn." Radiation and vegetable oils can cause "acquired immunodeficiency." Unsaturated oils, especially polyunsaturates, weaken the immune system's function in ways that are similar to the damage caused by radiation, hormone imbalance, cancer, aging, or viral infections. The media discuss sexually transmitted and drug-induced immunodeficiency, but it isn't yet considered polite to discuss vegetable oil-induced immunodeficiency.

 

Unsaturated oils: When an oil is saturated, that means that the molecule has all the hydrogen atoms it can hold. Unsaturation means that some hydrogen atoms have been removed, and this opens the structure of the molecule in a way that makes it susceptible to attack by free radicals.

Free radicals are reactive molecular fragments that occur even in healthy cells, and can damage the cell. When unsaturated oils are exposed to free radicals they can create chain reactions of free radicals that spread the damage in the cell, and contribute to the cell's aging.

Rancidity of oils occurs when they are exposed to oxygen, in the body just as in the bottle. Harmful free radicals are formed, and oxygen is used up.

Essential fatty acids (EFA) are, according to the textbooks, linoleic acid and linolenic acid, and they are supposed to have the status of "vitamins," which must be taken in the diet to make life possible. However, we are able to synthesize our own unsaturated fats when we don't eat the "EFA," so they are not "essential." The term thus appears to be a misnomer. [M. E. Hanke, "Biochemistry," Encycl. Brit. Book of the Year, 1948.]

Q: You say vegetable oils are hazardous to your health. What vegetable oils are you talking about?

Mainly, I'm referring to soybean oil, corn oil, safflower oil, canola, sesame oil, sunflower seed oil, palm oil, and any others that are labeled as "unsaturated" or "polyunsaturated." Almond oil, which is used in many cosmetics, is very unsaturated.

Chemically, the material that makes these oils very toxic is the polyunsaturated fat itself. These unsaturated oils are found in very high concentrations in many seeds, and in the fats of animals that have eaten a diet containing them. The fresh oils, whether cold pressed or consumed as part of the living plant material, are intrinsically toxic, and it is not any special industrial treatment that makes them toxic. Since these oils occur in other parts of plants at lower concentration, and in the animals which eat the plants, it is impossible to eat a diet which lacks them, unless special foods are prepared in the laboratory.

These toxic oils are sometimes called the "essential fatty acids" or "vitamin F," but this concept of the oils as essential nutrients was clearly disproved over 50 years ago. 

Linoleic and linolenic acids, the "essential fatty acids," and other polyunsaturated fatty acids, which are now fed to pigs to fatten them, in the form of corn and soy beans, cause the animals' fat to be chemically equivalent to vegetable oil. In the late 1940s, chemical toxins were used to suppress the thyroid function of pigs, to make them get fatter while consuming less food. When that was found to be carcinogenic, it was then found that corn and soy beans had the same antithyroid effect, causing the animals to be fattened at low cost. The animals' fat becomes chemically similar to the fats in their food, causing it to be equally toxic, and equally fattening.

These oils are derived from seeds, but their abundance in some meat has led to a lot of confusion about "animal fats." Many researchers still refer to lard as a "saturated fat," but this is simply incorrect when pigs are fed soybeans and corn.

Q: How are these oils hazardous to your health?

Ultimately, all systems of the body are harmed by an excess of these oils. There are two reasons for this. One is that the plants produce the oils for protection, not only to store energy for the germination of the seed. To defend the seeds from the animals that would eat them, the oils block the digestive enzymes in the animals' stomachs. Digestion is one of our most basic functions, and evolution has built many other systems by using variations of that system; as a result, all of these systems are damaged by the substances which damage the digestive system.

The other reason is that the seeds are designed to germinate in early spring, so their energy stores must be accessible when the temperatures are cool, and they normally don't have to remain viable through the hot summer months. Unsaturated oils are liquid when they are cold, and this is necessary for any organism that lives at low temperatures. For example, fish in cold water would be stiff if they contained saturated fats. These oils easily get rancid (spontaneously oxidizing) when they are warm and exposed to oxygen. Seeds contain a small amount of vitamin E to delay rancidity. When the oils are stored in our tissues, they are much warmer, and more directly exposed to oxygen, than they would be in the seeds, and so their tendency to oxidize is very great. These oxidative processes can damage enzymes and other parts of cells, and especially their ability to produce energy.

The enzymes which break down proteins are inhibited by unsaturated fats, and these enzymes are needed not only for digestion, but also for production of thyroid hormones, clot removal, immunity, and the general adaptability of cells. The risks of abnormal blood clotting, inflammation, immune deficiency, shock, aging, obesity, and cancer are increased. Thyroid and progesterone are decreased. Since the unsaturated oils block protein digestion in the stomach, we can be malnourished even while "eating well."

Plants produce many protective substances to repel or injure insects and other animals that eat them. They produce their own pesticides. The oils in seeds have this function. On top of this natural toxicity, the plants are sprayed with industrial pesticides, which can concentrate in the seed oils.

It isn't the quantity of these polyunsaturated oils which governs the harm they do, but the relationship between them and the saturated fats. Obesity, free radical production, the formation of age pigment, blood clotting, inflammation, immunity, and energy production are all responsive to the ratio of unsaturated fats to saturated fats, and the higher this ratio is, the greater the probability of harm there is. 

There are interesting interactions between these oils and estrogen. For example, puberty occurs at an earlier age if estrogen is high, or if these oils are more abundant in the diet. This is probably a factor in the development of cancer.

All systems of the body are harmed by an excess of these oils. There are three main kinds of damage: one, hormonal imbalances, two, damage to the immune system, and three, oxidative damage.

Q: How do they cause hormonal imbalances?

There are many changes in hormones caused by unsaturated fats. Their best understood effect is their interference with the function of the thyroid gland. Unsaturated oils block thyroid hormone secretion, its movement in the circulatory system, and the response of tissues to the hormone. When the thyroid hormone is deficient, the body is generally exposed to increased levels of estrogen. The thyroid hormone is essential for making the "protective hormones" progesterone and pregnenolone, so these hormones are lowered when anything interferes with the function of the thyroid. The thyroid hormone is required for using and eliminating cholesterol, so cholesterol is likely to be raised by anything which blocks the thyroid function. [B. Barnes and L. Galton, Hypothyroidism, 1976, and 1994 references.]

Q: How do they damage the immune system?

Vegetable oil is recognized as a drug for knocking out the immune system. Vegetable oil emulsions were used to nourish cancer patients, but it was discovered that the unsaturated oils were suppressing their immune systems. The same products, in which vegetable oil is emulsified with water for intravenous injection, are now marketed specifically for the purpose of suppressing immunity in patients who have had organ transplants. Using the oils in foods has the same harmful effect on the immune system. [E. A. Mascioli, et al.,Lipids 22(6) 421, 1987.] Unsaturated fats directly kill white blood cells. [C. J. Meade and J. Martin, Adv. Lipid Res., 127, 1978.] 

Q: How do they cause oxidative damage?

Unsaturated oils get rancid when exposed to air; that is called oxidation, and it is the same process that occurs when oil paint "dries." Free radicals are produced in the process.

This process is accelerated at higher temperatures. The free radicals produced in this process react with parts of cells, such as molecules of DNA and protein and may become attached to those molecules, causing abnormalities of structure and function.

Q: What if I eat only organically grown vegetable oils?

Even without the addition of agricultural chemicals, an excess of unsaturated vegetable oils damages the human body. Cancer can't occur, unless there are unsaturated oils in the diet. [C. Ip, et al., Cancer Res. 45, 1985.] Alcoholic cirrhosis of the liver cannot occur unless there are unsaturated oils in the diet. [Nanji and French, Life Sciences. 44, 1989.] Heart disease can be produced by unsaturated oils, and prevented by adding saturated oils to the diet. [J. K. G. Kramer, et al., Lipids 17, 372, 1983.]

Q. What oils are safe?

Coconut and olive oil are the only vegetable oils that are really safe, but butter and lamb fat, which are highly saturated, are generally very safe (except when the animals have been poisoned). Coconut oil is unique in its ability to prevent weight-gain or cure obesity, by stimulating metabolism. It is quickly metabolized, and functions in some ways as an antioxidant. Olive oil, though it is somewhat fattening, is less fattening than corn or soy oil, and contains an

antioxidant which makes it protective against heart disease and cancer.

Israel had the world's highest incidence of breast cancer when they allowed the insecticide lindane to be used in dairies, and the cancer rate decreased immediately after the government prohibited its use. The United States has fairly good laws to control the use of cancer-causing agents in the food supply, but they are not vigorously enforced. Certain cancers are several times more common among corn farmers than among other farmers, presumably because corn "requires" the use of more pesticides. This probably makes corn oil's toxicity greater than it would be otherwise, but even the pure, organically grown material is toxic, because of its intrinsic unsaturation. 

In the United States, lard is toxic because the pigs are fed large quantities of corn and soy beans. Besides the intrinsic toxicity of the seed oils, they are contaminated with agricultural chemicals. Corn farmers have a very high incidence of cancer, presumably because of the pesticides they use on their crop.

Q: But aren't "tropical oils" bad for us?

In general, tropical oils are much more healthful than oils produced in a cold climate. This is because tropical plants live at a temperature that is close to our natural body temperature. Tropical oils are stable at high temperatures. When we eat tropical oils, they don't get rancid in our tissues as the cold-climate seed oils, such as corn oil, safflower oil and soy oil, do. [R.B. Wolf, J. Am. Oil Chem. Soc. 59, 230, 1982; R. Wolfe, Chem 121, Univ. of Oregon, 1986.]

When added to a balanced diet, coconut oil slightly lowers the cholesterol level, which is exactly what is expected when a dietary change raises thyroid function. This same increase in thyroid function and metabolic rate explains why people and animals that regularly eat coconut oil are lean, and remarkably free of heart disease and cancer.

Although I don't recommend "palm oil" as a food, because I think it is less stable than coconut oil, some studies show that it contains valuable nutrients. For example, it contains antioxidants similar to vitamin E, which lowers both LDL cholesterol and a platelet clotting factor. [B. A. Bradlow, University of Illinois, Chicago; Science News 139, 268, 1991.] Coconut oil and other tropical oils also contain some hormones that are related to pregnenolone or progesterone.

Q: Isn't coconut oil fattening?

Coconut oil is the least fattening of all the oils. Pig farmers tried to use it to fatten their animals, but when it was added to the animal feed, coconut oil made the pigs lean [See Encycl. Brit. Book of the Year, 1946].

Q: What about olive oil? Isn't it more fattening than other vegetable oils?

In this case, as with coconut oil, "fattening" has more to do with your ability to burn calories than with the caloric value of the oil. Olive oil has a few more calories per quart than corn or soy oil, but since it doesn't damage our ability to burn calories as much as the unsaturated oils do, it is less fattening. Extra virgin olive oil is the best grade, and contains an antioxidant that protects against cancer and heart disease. [1994, Curr. Conts.]

Q: Is "light" olive oil okay?

No. Now and then someone learns how to make a profit from waste material. "Knotty pine" boards were changed from a discarded material to a valued decorative material by a little marketing skill. Light olive oil is a low grade material which sometimes has a rancid smell and probably shouldn't be used as food.

Q: Is margarine okay?

There are several problems with margarine. The manufacturing process introduces some toxins, including a unique type of fat which has been associated with heart disease. [Sci. News, 1974; 1991.] There are likely to be dyes and preservatives added to margarine. And newer products contain new chemicals that haven't been in use long enough to know whether they are safe. 

However, the basic hardening process, hydrogenation of the oils, has been found to make the oils less likely to cause cancer. If I had to choose between eating ordinary corn oil or corn oil that was 100% saturated, to make a hard margarine, I would choose the hard margarine, because it resists oxidation, isn't suppressive to the thyroid gland, and doesn't cause cancer.

Q: What about butter?

Butter contains natural vitamin A and D and some beneficial natural hormones. It is less fattening than the unsaturated oils. There is much less cholesterol in an ounce of butter than in a lean chicken breast [about 1/5 as much cholesterol in fat as in lean meat on a calorie basis, according to R. Reiser of Texas A & M Univ., 1979.].

Q: Are fish oils good for you?

Some of the unsaturated fats in fish are definitely less toxic than those in corn oil or soy oil, but that doesn't mean they are safe. Fifty years ago, it was found that a large amount of cod liver oil in dogs' diet increased their death rate from cancer by 20 times, from the usual 5% to 100%. A diet rich in fish oil causes intense production of toxic lipid peroxides, and has been observed to reduce a man's sperm count to zero. [H. Sinclair, Prog. Lipid Res. 25, 667, 1989.]

Q: What about lard?

In this country, lard is toxic beause the pigs are fed large quantities of corn and soy beans. Besides the natural toxicity of the seed oils, the oils are contaminated with agricultural chemicals. Corn farmers have a very high incidence of cancer, presumably because corn "requires" the use of more pesticides. This probably makes corn oil's toxicity greater than it would be otherwise. but even the pure, organically grown material is toxic, because of its unsaturation.

 

Women with breast cancer have very high levels of agricultural pesticides in their breasts [See Science News, 1992, 1994].

Israel had the world's highest incidence of breast cancer when they allowed the insecticide lindane to be used in dairies, and the cancer rate decreased immediately after the government prohibited its use. The United States has fairly good laws to control the use of cancer-causing agents in the food supply, but they are not vigorously enforced. [World Incid. of Cancer, 1992]

Q: I have no control over oils when eating out. What can I do to offset the harmful effects of polyunsaturated oils?

A small amount of these oils won't kill you. It is the proportion of them in your diet that matters. A little extra vitamin E (such as 100 units per day) will take care of an occasional American restaurant meal. Based on animal studies, it would take a teaspoonful per day of corn or soy oil added to a fat-free diet to significantly increase our risk of cancer. Unfortunately, it is impossible to devise a fat-free diet outside of a laboratory. Vegetables, grains, nuts, fish and meats all naturally contain large amounts of these oils, and the extra oil used in cooking becomes a more serious problem.

Q Why are the unsaturated oils so popular if they are dangerous?

It's a whole system of promotion, advertising, and profitability.

50 years ago, paints and varnishes were made of soy oil, safflower oil, and linseed (flax seed) oil. Then chemists learned how to make paint from petroleum, which was much cheaper. As a result, the huge seed oil industry found its crop increasingly hard to sell. Around the same time, farmers were experimenting with poisons to make their pigs get fatter with less food, and they discovered that corn and soy beans served the purpose, in a legal way. The crops that had been grown for the paint industry came to be used for animal food. Then these foods that made animals get fat cheaply came to be promoted as foods for humans, but they had to direct attention away from the fact that they are very fattening. The "cholesterol" focus was just one of the marketing tools used by the oil industry. Unfortunately it is the one that has lasted the longest, even after the unsaturated oils were proven to cause heart disease as well as cancer. [Study at L.A. Veterans Hospital, 1971.]

I use some of these oils (walnut oil is very nice, but safflower oil is cheaper) for oil painting, but I am careful to wash my hands thoroughly after I touch them, because they can be absorbed through the skin. 

 

SUMMARY

Unsaturated fats cause aging, clotting, inflammation, cancer, and weight gain.

Avoid foods which contain the polyunsaturated oils, such as corn, soy, safflower, flax, cottonseed, canola, peanut, and sesame oil.

Mayonnaise, pastries, even candies may contain these oils; check the labels for ingredients.

Pork is now fed corn and soy beans, so lard is usually as toxic as those oils; use only lean pork.

Fish oils are usually highly unsaturated; "dry" types of fish, and shellfish, used once or twice a week, are good. Avoid cod liver oil.

Use vitamin E.

Use coconut oil, butter, and olive oil.

Unsaturated fats intensify estrogen's harmful effects. 

 

REFERENCES

1. C. F. Aylsworth, C. W. Welsch, J. J. Kabora, J. E. Trosko, "Effect of fatty acids on junctional communication: Possible role in tumor promotion by dietary fat," Lipids 22(6), 445-54, 1987.

2. J. M. Bell and P. K. Lundberg, "Effects of a commercial soy lecithin preparation on development of sensorimotor behavior & brain biochemicals in the rat," Dev. Psychobiol. 8(1), 59-66, 1985.

3. R. S. Britton and B. R. Bacon, "Role of free radicals in liver diseases and hepatic fibrosis," Hepatogastroenterology 41(4), 343-348, 1994.

4. M. S. Brown, et al., "Receptor mediated uptake of lipoprotein-cholesterol and its utilization for steroid synthesis," Recent Progress in Hormone Res. 35, 315-257, 1979.

5. P. A. Cerutti, "Oxy-radicals and cancer," Lancet 455(8926), 862-863, 1994.

6. I. Davies and A. P. Fotheringham, "Lipofuscin--Does it affect cellular performance?" Exp. Gerontol. 16, 119-125, 1981.

7. K. L. Erickson, et al., "Dietary lipid modulation of immune responsiveness," Lipids 18, 468-74, 1983.

8. V. A. Folcik and M. K. Cathcart, "Predominance of esterified hydroperoxy-linoleic acid in human monocyte-oxidized LDL," J. Lipid Res. 35(9), 1570-1582, 1994.

9. Fuller, C. J. and I. Jialal, "Effects of antioxidants and fatty acids on low-density-lipoprotein oxidation," Am. J. Clin. Nutr. 60(6 Suppl.), S1010-S1013, 1994.

10. M. C. Galli, et al., "Peroxidation potential of rat thymus during development and involution," Comp. Biochem. Physiol © 107(3), 435-440, 1994.

11. J. M. Gaziano, et al., "Supplementation with beta-carotene in vivo and in vitro does not inhibit low density lipoprotein oxidation," Atherosclerosis 112(2), 187-195, 1995.

12. M. B. Grisham, "Oxidants and free radicals in inflammatory bowel disease," Lancet 344(8926), 859-861, 1994.

13. J. M. C. Gutteridge, "Antioxidants, nutritional supplements and life-threaening diseases," Brit. J. Biomed. Sci. 51(3), 288-295, 1994.

14. D. Harman, et al., "Free radical theory of aging: effect of dietary fat on central nervous system function," J. American Geriatrics Soc. 24(1), 292-98, 1976.

15. W. S. Hartroft and E. A. Porta, "Ceroid pigments," chapter VIII in Present Knowledge in Nutrition, 3rd Edition, Nutrition Foundation, N.Y., 1967.

16. H. J. Helbock, et al., (Univ. of Calif. Berkeley) January, 1993 Pediatrics; in Science News 143, 78, 1993. "Toxic 'fats' in preemie supplement."

H. R. Hirsch, "The waste-product theory of aging: Cell division rate as a function of waste volume," Mech. Ageing Dev. 36, 95-107, 1986.

17. S. G. Imre, et al., "Increased proportion of docosahexanoic acid and high lipid peroxidation capacity in erythrocytes of stroke patients," Stroke 25(12), 2416-2420, 1994.

18. Clement Ip, et al., "Requirement of essential fatty acids for mammary tumorigenesis," Cancer Res. 45(5), 1997-2001, 1985.

19. P. V. Johnston, "Dietary fat, eicosanoids, and immunity," Adv. in Lipid Res. 21, 103-41, 1985.

20. S. Kasayna, et al., "Unsaturated fatty acids are required for continuous proliferation of transformed androgen-dependent cells by fibroblast growth factor family proteins," Cancer Research 54(24), 6441-6445, 1994.

21. H. A. Kleinveld, et al., "Vitamin E and fatty acid intervention does not attenuate the progression of atherosclerosis in watanabe heritable hyperlipidemic rabbits," Arterioscler. Thromb. Vasc. Biol. 15(2), 290-297, 1995.

22. J. K. G. Kramer, et al., Lipids 17, 372, 1983.

23. I. A. Kudryavtsev, et al., "Character of the modifying action of polyunsaturated fatty acids on growth of transplantable tumors of various types," Bull. Exp. Biol & Med. 105(4), 567-70, 1986.

24. R. D. Lynch, "Utilization of polyunsaturated fatty acids by human diploid cells aging in vitro," Lipids 15(6), 412-20, 1967.

25. M. Martinez and A. Ballabriga, "Effects of parenteral nutrition with high doses of linoleate on the developing human liver and brain," Lipids 22(3), 133-8, 1987.

26. R. S. Mehta, et al., "High fish oil diet increases oxidative stress potential in mammary gland of spontaneously hypertensive rats," Clin. Exp. Pharmacol. Physiol. 21(11), 881-889, 1994.

27. A. A. Nanji and S. W. French, "Dietary linoleic acid is required for development of experimentally induced alcoholic liver-injury," Life Sciences 44, 223-7, 1989.

28. J. A. Lindsay, et al., "Fatty acid metabolism and cell proliferation," Lipids 18, 566-9, 1983.

29. M. L. Pearce and S. Dayton, "Incidence of cancer in men on a diet high in polyunsaturated fat," Lancet 1, 464-467, 1971. 

30. Pryor, W. A., "Free radicals and lipid proxidation--what they are and how they got that way," Natural Antioxidants in Human, pp. 1-24, 1994.

31. P. Purasiri, et al., "Modulation of cytokine production in vivo by dietary essential fatty acids in patients with colorectal cancer," Clin. Sci. 87(6), 711-717, 1994.

32. S. Rapoport and T. Schewe, "Endogenous inhibitors of the respiratory chain," Trends in Biochemical Sci., Aug., 1977, 186-189.

33. H. Selye, "Sensitization by corn oil for the production of cardiac necrosis...," Amer. J. of Cardiology 23, 719-22, 1969.

34. D. A. Street, et al., "Serum antioxidants and myocardial infarction--Are low levels of carotenoids and alpha-tocopherol risk factors for myocardial infarction?" Circulation 90(3), 1154-1161, 1994.

35. M. Takei, et al., "Inhibitory effects of calcium antagonists on mitochondrial swelling induced by lipid peroxidation or arachidonic acid in the rat brain in vitro," Neurochem. Res. 29(9), 1199-1206, 1994.

36. J. P. Thomas, et al., "Involvement of preexisting lipid hydroperoxides in Cu2+-stimulated oxidation of low-density lipoprotein," Arch. Biochem. Biophys. 315(2), 244-254, 1994.

37. C. W. Welsch, "Review of the effects of dietary fat on experimental mammary gland tumorigenesis: Role of lipid peroxidation," Free Radical Biol. Med. 18(4), 757-773, 1995. 

 

Essential Fatty Acids ("EFA"): A Technical Point

Those fatty acids, such as linoleic acid and linolenic acid, which are found in linseed oil, soy oil, walnut oil, almond oil, corn oil, etc., are essential for the spontaneous development of cancer, and also appear to be decisive factors in the development of age pigment, alcoholic cirrhosis of the liver, diabetes, obesity, stress-induced immunodeficiency, some aspects of the shock reaction, epilepsy, brain swelling, congenital retardation, hardening of the arteries, cataracts, and other degenerative conditions. They are possibly the most important toxin for animals.

The suppression of an enzyme system is characteristic of toxins. The "EFA" powerfully, almost absolutely, inhibit the enzyme systems--desaturases and elongases--which make our native unsaturated fatty acids.

After weaning, these native fats gradually disappear from the tissues and are replaced by the EFA and their derivatives. The age-related decline in our ability to use oxygen and to produce energy corresponds closely to the substitution of linoleic acid for the endogenous fats, in cardiolipin, which regulates the crucial respiratory enzyme, cytochrome oxidase.

Although the fish oils are less effective inhibitors of the enzymes, they are generally similar to the seed oils in their ability to promote cancer, age-pigment formation, free radical damage, etc. Their only special nutritional value seems to be their vitamin A and vitamin D content. Since vitamin A is important in the development of the eye, it is interesting that claims are being made for the essentiality of some of the fatty acid components of fish oil, in relation to the development of the eye.

The polyunsaturated oils from seeds are recommended for use in paints and varnishes, but skin contact with these substances should be avoided."

 

 

 

 

 

 

 

and

 

 

"

The Great Fish Oil Experiment

Reading medical journals and following the mass media, it's easy to get the idea that fish oil is something any sensible person should use. It's rare to see anything suggesting that it could be dangerous. 

During the recent years in which the U.S. government has gone from warning against the consumption of too much of these omega-3 oils ("to assure that the combined daily intake of two fatty acids that are components" "(i.e., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) would not exceed 3 grams per person per day (g/p/d)") to sponsoring biased industry claims, there has been considerable accumulation of information about the dangers of fish oils and omega-3 fatty acids. But there has been an even greater increase in the industry's promotional activities. 

The US government and the mass media selectively promote research that is favorable to the fish oil industry. The editorial boards of oil research journals often include industry representatives, and their editorial decisions favor research conclusions that promote the industry, in the way that editorial decisions in previous decades favored articles that denied the dangers of radiation and reported that estrogen cures almost everything. Marcia Angell, former editor of the NEJM, has observed that the "significant results" reported in published studies can be properly interpreted only by knowing how many studies reporting opposite results were rejected by the editors. 

One way to evaluate published studies is to see whether they tell you everything you would need to know to replicate the experiment, and whether the information they provide is adequate for drawing the conclusions they draw, for example whether they compared the experimental subjects to proper control subjects. With just a few minimal critical principles of this sort, most "scientific" publications on nutrition, endocrinology, cancer and other degenerative diseases are seen to be unscientific. In nutritional experiments with fish oil, controls must receive similar amounts of vitamins A, D, E, and K, and should include fat free or "EFA" deficient diets for comparison. 

In declaring EPA and DHA to be safe, the FDA neglected to evaluate their antithyroid, immunosuppressive, lipid peroxidative (Song et al., 2000), light sensitizing, and antimitochondrial effects, their depression of glucose oxidation (Delarue et al., 2003), and their contribution to metastatic cancer (Klieveri, et al., 2000), lipofuscinosis and liver damage, among other problems. 

========================================= 

"Houston-based Omega Protein Inc.'s bottom line may get a little fatter. 

The publicly traded company, which produces an Omega-3 fatty acid product called OmegaPure, has signed an agreement to provide its fish oil in school lunches in 38 school districts in South Texas beginning this month. 

The 500-person company, which has ties to former President George Bush's Zapata Corp., will distribute the product through an agreement with Mercedes-based H&H Foods. 

Although the dollar amount of the contract between Omega Protein and H&H Foods hinges on future sales, the company is poised to cash in as school administrators and parents refocus their attention on the nutritional content of student diets. 

Omega Protein President and CEO Joseph von Rosenberg says the company's recent investment of $16.5 million for a fish oil refinery in Reedville, Va., scheduled for completion in May, and an increased awareness of the benefits of Omega-3 in human food, positions Omega to capitalize on predicted demand." 

Jenna Colley 

Houston Business Journal 

========================================= 

Andrew Weil was on the radio recently recommending DHA (usually found in fish oil*) to treat depression, and I think that means that a lot of people are buying it and eating it. A few years ago the government declared that it was "generally regarded as safe" and approved its use in baby formula, and a few months ago Texas school districts contracted with Omega Protein (which grew out of the Bush family's Zapata Corporation) to provide menhaden fish oil for school lunches. Between the 1950s and the 1970s, people were assured that eating polyunsaturated seed oils would protect them against heart disease. There's no evidence that the bad outcome of that campaign decreased the gullibility of the public. They are happily joining in the latest public health experiment.

 

 
*Weil recommends eating "oily fish"--"wild Alaskan salmon, mackerel, sardines, or herring"--. "If you do take supplements, fish oil is a better source of DHA than algae" 

When a group of people in government and industry decide on a policy, they can use carrots (good jobs, grants, and prestige) and sticks (loss of jobs and grants, organized slander, and worse) to make their guidelines clear, and most people will choose to follow those cues, even if they know that the policy is wrong. Historically, policy makers have told the public that "radiation is good for you," "estrogen will make you fertile (or safely infertile) and feminine and strong and intelligent," "starchy foods will prevent diabetes and obesity," "using diuretics and avoiding salt will make pregnancy safer," and that the polyunsaturated fatty acids are "nutritionally essential, and will prevent heart disease." 

The original "essential fatty acids" were linoleic, linolenic, and arachidonic acids. Now that the toxic effects of those are coming to be recognized, new "essential fatty acids," the omega-3 fatty acids, including those with long chains, found in fish oils, are said to make babies more intelligent, to be necessary for good vision, and to prevent cancer, heart disease, obesity, arthritis, depression, epilepsy, psychosis, dementia, ulcers, eczema and dry skin. 

With just a normal amount of vitamin E in the diet, cod liver oil is certain to be highly oxidized in the tissues of a mammal that eats a lot of it, and an experiment with dogs showed that it could increase their cancer mortality from the normal 5% to 100%. Although fish oils rapidly destroy vitamin E in the body, some of them, especially the liver oils, can provide useful vitamins, A and D. In studies comparing fish oil diets with standard diets, these nutrients, as well as any toxins besides fatty acids (Huang, et al., 1997; Miyazaki, et al., 1998) in either type of oil, should be taken into account, but they seldom are.

Despite the nutritional value of those vitamins, fish oils are generally much more immunosuppressive than the seed oils, and the early effects of fish oil on the "immune system" include the suppression of prostaglandin synthesis, because the more highly unsaturated long chain fats interfere with the conversion of linoleic acid into arachidonic acid and prostaglandins. The prostaglandins are so problematic that their suppression is helpful, whether the inhibition is caused by aspirin or vitamin E, or by fish oil.

Some of the important antiinflammatory effects of fish oil result from the oxidized oils, rather than the unchanged oils (Sethi, 2002; Chaudhary, et al., 2004). These oils are so unstable that they begin to spontaneously oxidize even before they reach the bloodstream.

In experiments that last just a few weeks or months, there may not be time for cancers to develop, and on that time scale, the immunosuppressive and antiinflammatory effects of oxidized fish oil might seem beneficial. For a few decades, x-ray treatments were used to relieve inflammatory conditions, and most of the doctors who promoted the treatment were able to retire before their patients began suffering the fatal effects of atrophy, fibrosis, and cancer. (But a few people are still advocating x-ray therapy for inflammatory diseases, e.g., Hildebrandt, et al., 2003.) The fish oil fad is now just as old as the x-ray fad was at its peak of popularity, and if its antiinflammatory actions involve the same mechanisms as the antiinflammatory immunosuppressive x-ray treatments, then we can expect to see another epidemic of fibrotic conditions and cancer in about 15 to 20 years. 

Around 1970 researchers reported that animals given fish oil in their food lived longer than animals on the standard diet. Alex Comfort, who was familiar with the research showing that simple reduction of food intake increased longevity, observed that the animals were very reluctant to eat the food containing smelly fish oil, and were eating so little food that their longevity could be accounted for by their reduced caloric intake. Even when "fresh" deodorized fish oil is added to the diet, its spontaneous oxidation before it reaches the animal's tissues reduces its caloric value. Without antioxidants, fish oil is massively degraded within 48 hours, and even with a huge amount of antioxidant there is still considerable degradation (Gonzalez, 1988; Klein, et al., 1990). 

Fish oil has been used for hundreds of years as varnish or for fuel in lamps, and the fatty fish have been used as fertilizer and animal feed, and later the hydrogenated solid form of the oil, which is more stable, has been used in Europe as a food substitute for people. When whale hunting was reduced around 1950, fish oil was substituted for whale oil in margarine production. Like the seed oils, such as linseed oil, the fish oils were mostly replaced by petroleum derivatives in the paint industry after the 1960s.

Although by 1980 many animal diseases were known to be caused by eating oily fish, and the unsaturated oils were known to accelerate the formation of the "age pigment," lipofuscin, many "beneficial effects" of dietary fish oil started appearing in research journals around that time, and the mass media, responding to the industry's public relations campaign, began ignoring studies that showed harmful effects from eating fish oil.

When reviewers in professional journals begin to ignore valid research whose conclusions are harmful to the fish oil industry, we can see that the policy guidelines set by the industry and its agents in government have become clear. Around the end of the century, we begin to see a strange literary device appearing, in which research reports on the toxic effects of omega-3 oils are prefaced by remarks to the effect that "we all know how great these oils are for good health." I think I detect groveling and shuffling of the feet by authors who want to get their work published. If you are willing to say that your work probably doesn't mean what it seems to mean, maybe they will publish it.

For more than 50 years, the great majority of the medical publications on estrogen were part of the drug industry's campaign to fraudulently gain billions of dollars, and anyone who cared to analyze them could see that the authors and editors were part of a cult, rather than seekers of useful knowledge. Likewise, the doctrine of the harmlessness of x-rays and radioactive fallout was kept alive for several decades by demonizing all who challenged it. It now looks as though we are in danger of entering another period of medical-industrial-governmental cultism, this time to promote the universal use of polyunsaturated fats as both drugs and foods. 

In 2004, a study of 29,133 men reported that the use of omega-3 oil or consumption of fish didn't decrease depression or suicide, and in 2001, a study of 42,612 men and women reported that after more than 9 years the use of cod liver oil showed no protective effect against coronary heart disease (Hakkarainen, et al., 2004; Egeland, et al., 2001).

The most popular way of arguing that fish oil will prevent heart disease is to show that it lowers blood lipids, continuing the old approach of the American Heart Association's "heart protective diet." Unfortunately for that argument, it's now known that the triglycerides in the blood are decreased because of the fish oil's toxic effects on the liver (Hagve and Christophersen, 1988; Ritskes-Hoitinga, et al., 1998). In experiments with rats, EPA and DHA lowered blood lipids only when given to rats that had been fed, in which case the fats were incorporated into tissues, and suppressed mitochondrial respiration (Osmundsen, et al., 1998).

The belief that eating cholesterol causes heart disease was based mainly on old experiments with rabbits, and subsequent experiments have made it clear that it is oxidized cholesterol that damages the arteries (Stapran, et al., 1997). Since both fish oil and oxidized cholesterol damage rabbits' arteries, and since the lipid peroxides associated with fish oil attack a great variety of biological materials, including the LDL lipoproteins carrying cholesterol, the implications of the rabbit experiments now seem very different.

Another way of arguing for the use of fish oil or other omega-3 fats is to show a correlation between disease and a decreased amount of EPA, DHA, or arachidonic acid in the tissues, and to say "these oils are deficient, the disease is caused by a deficiency of essential fatty acids." Those oils are extremely susceptible to oxidation, so they tend to spontaneously disappear in response to tissue injury, cellular excitation, the increased energy demands of stress, exposure to toxins or ionizing radiation, or even exposure to light. That spontaneous oxidation is what made them useful as varnish or paint medium. But it is what makes them sensitize the tissues to injury. Their "deficiency" in the tissues frequently corresponds to the intensity of oxidative stress and lipid peroxidation; it is usually their presence, rather than their deficiency, that created the disposition for the disease.

One of the earliest harmful effects of polyunsaturated fatty acids, PUFA, to be observed was their acceleration of the formation of lipofuscin or ceroid, the "age pigment," during oxidative stress or vitamin E deficiency. Associated with the formation of lipofuscin, the PUFA were discovered to cause degeneration of the gonads and brain, and the fact that vitamin E could prevent some of their toxic effects led to the idea that vitamin E was essentially an antioxidant. Unfortunately, the protective effect of vitamin E against the PUFA is only partial (Allard, et al., 1997).

The degenerative diseases are all associated with disturbances involving fat metabolism and lipid peroxidation. Alzheimer's disease, alcoholic and nonalcoholic liver disease, retinal degeneration, epilepsy, AIDS, diabetes, and a variety of circulatory problems involve breakdown products of the PUFA. The products of PUFA decomposition include acrolein, malondialdehyde, hydroxynonenal, crotonaldehyde, ethane, pentane, and the neuroprostanes, which are prostaglandin-like molecules formed from DHA by free radical lipid peroxidation products, especially in the brain and at a higher level in Alzheimer's disease.

The reactions of three types of cell--vascular endothelium, nerve cells, and thymus cells--to the PUFA will illustrate some of the important processes involved in their toxicity.

When the body doesn't have enough glucose, free fatty acids are released from the tissues, and their oxidation blocks the oxidation of glucose even when it becomes available from the breakdown of protein caused by cortisol, which is released during glucose deprivation. Cells of the thymus are sensitive to glucose deprivation, and even in the presence of glucose, cortisol prevents them from using glucose, causing them to take up fatty acids. The thymic cells die easily when exposed either to excess cortisol, or deficient glucose. The polyunsaturated fatty acids linoleate, arachidonate, and eicosapentaenoic, are especially toxic to thymic cells by preventing their inactivation of cortisol, increasing its action. (Klein, et al., 1987, 1989, 1990). Lymphocytes from people with AIDS and leukemia are less able to metabolize cortisol. An extract of serum from AIDS patients caused lymphocytes exposed to cortisol to die 7 times faster than cells from healthy people. AIDS patients have high levels of both cortisol and free polyunsaturated fatty acids (Christeff, et al., 1988). 

The cytotoxicity caused by EPA and its metabolites (15 mg. of EPA per liter killed over 90% of a certain type of macrophage) isn't inhibited by vitamin E (Fyfe and Abbey, 2000). Immunological activation tends to kill T cells that contain PUFA (Switzer, et al., 2003).

When animals are fed fish oil and then exposed to bacteria, their immunosuppressed thymic (T) cells cause them to succumb to the infection more easily than animals fed coconut oil or a fat free diet. Natural killer cells, which eliminate cancer cells and virus infected cells, are decreased after eating fish oil, and T suppressor cells are often increased. More subtle interference with immunity is produced by the actions of PUFA on the "immune synapse," a contact between cells that permits the transmission of immunological information. The immunosuppressive effect of fish oil is recognized as a useful aid in preventing the rejection of transplanted organs, but some studies are showing that survival a year after transplantation isn't improved.

Polyunsaturated fatty acids, especially those that can be turned into prostaglandins, are widely involved in causing inflammation and vascular leakiness. EPA and DHA don't form ordinary prostaglandins, though the isoprostanes and neuroprostanes they produce during lipid peroxidation behave in many ways like the more common prostaglandins, and their enzymically formed eicosanoids have some functions similar to those of the common prostaglandins. The brain contains a very high concentration of these unstable fatty acids, and they are released in synapses by ordinary excitatory process.

Chan, et al., 1983, found that polyunsaturated fats caused brain swelling and increased blood vessel permeability. In 1988, Chan's group found that DHA and other polyunsaturated fatty acids added to cultured cells from the cerebral cortex produced free radicals and stimulated production of malondialdehyde and lactate, and inhibited the uptake of glutamic acid, which suggests that they would contribute to prolonged excitation of the nerves (Yu, et al., 1986). In brain slices, the polyunsaturated fatty acids caused the production of free radicals and swelling of the tissue, and the saturated fatty acids didn't (Chan and Fishman, 1980). The PUFA inhibited the respiration of mitochondria in brain cells (Hillered and Chan, 1988), and at a higher concentration, caused them to swell (Hillered and Chan, 1989), but saturated fatty acids didn't produce edema. Free radical activity was shown to cause the liberation of free fatty acids from the cellular structure (Chan, et al., 1982, 1984). The activation of lipases by free radicals and lipid peroxides, with the loss of potassium from the cells, suggests that excitation can become a self-stimulating process, leading to cellular destruction.

DHA itself, rather than its decomposition products, facilitates excitatory (glutamate) nerve transmission (Nishikawa, et al., 1994), and that excitatory action causes the release of arachidonic acid (Pellerin and Wolfe, 1991).

Considering just one of the products of fish oil peroxidation, acrolein, and a few of its effects in cells, we can get an idea of the types of damage that could result from increasing the amount of omega-3 fats in our tissues. 

The "barrier" between the brain and blood stream is one of the most effective vascular barriers in the body, but it is very permeable to oils, and lipid peroxidation disrupts it, damaging the ATPase that regulates sodium and potassium (Stanimirovic, et al., 1995). Apparently, anything that depletes the cell's energy, lowering ATP, allows an excess of calcium to enter cells, contributing to their death (Ray, et al., 1994). Increasing intracellular calcium activates phospholipases, releasing more polyunsaturated fats (Sweetman, et al., 1995) The acrolein which is released during lipid peroxidation inhibits mitochondrial function by poisoning the crucial respiratory enzyme, cytochrome oxidase, resulting in a decreased ability to produce energy (Picklo and Montine, 2001). (In the retina, the PUFA contribute to light-induced damage of the energy producing ability of the cells [King, 2004], by damaging the same crucial enzyme.) Besides inhibiting the ability of nerve cells to produce energy from the oxidation of glucose, acrolein inhibits the ability of cells to regulate the excitatory amino acid glutamate (Lovell, et al., 2000), contributing to the excitatory process. High levels of acrolein (and other products of PUFA degradation) are found in the brain in Alzheimer's disease (Lovell, et al., 2001).

The "prion" diseases, CJD and TSE/BSE (mad cow disease) have many features in common with Alzheimer's disease, and several studies have shown that the "prion" protein produces its damage by activating the lipases that release polyunsaturated fatty acids and produce lipid peroxides (Bate, et al., 2004, Stewart, et al., 2001). 

Acrolein reacts with DNA, causing "genetic" damage, and also reacts with the lysine in proteins, for example contributing to the toxicity of oxidized low density lipoproteins (LDL), the proteins that carry cholesterol and that became famous because of their involvement in the development of atherosclerosis that was supposedly caused by eating saturated fats.

My newsletter on mad cow disease discussed the evidence incriminating the use of fish meal in animal feed, as a cause of the degenerative brain diseases, and earlier newsletters (glycemia, and glycation) discussed the reasons for thinking that inappropriate glycation of lysine groups in proteins, as a result of a lack of protective carbon dioxide/carbamino groups, produces the amyloid (or "prion") proteins that characterize the dementias. Acrolein, produced from the decomposing "fish oils" in the brain, is probably the most reactive product of lipid peroxidation in the brain, and so would be likely to cause the glycation of lysine in the plaque-forming proteins. 

These toxic effects of acrolein in the brain are analogous to the multitude of toxic effects of the omega-3 fatty acids and their breakdown products in all of the other organs and tissues of the body. Cancer cells are unusual in their degree of resistance to the lethal actions of the lipid peroxides, but the inflammatory effects of the highly unsaturated fatty acids are now widely recognized to be essentially involved in the process of cancerization (my newsletters on cancer and leakiness discuss some of the ways the fats are involved in tumor development). 

The fats that we synthesize from sugar, or coconut oil, or oleic acid, the omega-9 series, are protective against the inflammatory PUFA, in some cases more effective even than vitamin E.

In Woody Allen's 1973 movie, Sleeper, the protagonist woke up after being frozen for 200 years, to find that saturated fats were health foods. At the time the movie was made, that had already been established (e.g., Hartroft and Porta, 1968 edition of Present Knowledge in Nutrition, who showed that adequate saturated fat in the diet helped to protect against the formation of lipofuscin). 

PS: 

Royal Society for the Protection of Birds says 2004 has been the most catastrophic breeding season on record for seabirds along UK coasts. It says industrial fishing to supply fish meal and oil is barely sustainable and imperils the whole marine food web. 

"The UK has suffered serious seabird disasters this year already. In Shetland and Orkney, entire colonies of birds failed to produce any young because of severe food shortages. "On top of that, hundreds of seabirds have been washing ashore having perished at sea. Again, lack of food is thought to be one of the reasons." The report, Assessment Of The Sustainability Of Industrial Fisheries Producing Fish Meal And Fish Oil, was compiled for the RSPB by Poseidon Aquatic Resource Management Ltd and the University of Newcastle-upon-Tyne. 

REFERENCES 

Neuroreport. 2002 Oct 28;13(15):1933-8. Cyclo-oxygenase inhibitors protect against prion-induced neurotoxicity in vitro. Bate C, Rutherford S, Gravenor M, Reid S, Williams A. 

Neuroreport. 2004 Mar 1;15(3):509-13. The role of platelet activating factor in prion and amyloid-beta neurotoxicity.Bate C, Salmona M, Williams A. 

J Biol Chem. 2004 Aug 27;279(35):36405-11. Phospholipase A2 inhibitors or platelet-activating factor antagonists prevent prion replication. Bate C, Reid S, Williams A. 

J Neurochem 1980 Oct;35(4):1004-7. Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling. Chan PH, Fishman RA. 

Brain Res. 1982 Sep 23;248(1):151-7. Alterations of membrane integrity and cellular constituents by arachidonic acid in neuroblastoma and glioma cells. Chan PH, Fishman RA. 

J Neurochem. 1982 Feb;38(2):525-31. Phospholipid degradation and cellular edema induced by free radicals in brain cortical slices. Chan PH, Yurko M, Fishman RA. 

Ann Neurol. 1983 Jun;13(6):625-32. Induction of brain edema following intracerebral injection of arachidonic acid.Chan PH, Fishman RA, Caronna J, Schmidley JW, Prioleau G, Lee J. 

J Neurosci Res. 1984;12(4):595-605. Release of polyunsaturated fatty acids from phospholipids and alteration of brain membrane integrity by oxygen-derived free radicals. Chan PH, Fishman RA, Schmidley JW, Chen SF. 

J Neurochem 1988 Apr;50(4):1185-93. Induction of intracellular superoxide radical formation by arachidonic acid and by polyunsaturated fatty acids in primary astrocytic cultures. Chan PH, Chen SF, Yu AC. 

Clin Exp Immunol. 2002 Oct;130(1):12-8. Dietary n-3 PUFA affect TcR-mediated activation of purified murine T cells and accessory cell function in co-cultures. Chapkin RS, Arrington JL, Apanasovich TV, Carroll RJ, McMurray DN. 

J Biol Chem. 2004 Jul 16;279(29):30402-9. Epub 2004 Apr 14. Nonenzymatic glycation at the N terminus of pathogenic prion protein in transmissible spongiform encephalopathies. Choi YG, Kim JI, Jeon YC, Park SJ, Choi EK, Rubenstein R, Kascsak RJ, Carp RI, Kim YS. Transmissible spongiform encephalopathies (TSEs) are transmissible neurodegenerative diseases characterized by the accumulation of an abnormally folded prion protein, termed PrPSc, and the development of pathological features of astrogliosis, vacuolation, neuronal cell loss, and in some cases amyloid plaques. Although considerable structural characterization of prion protein has been reported, neither the method of conversion of cellular prion protein, PrPC, into the pathogenic isoform nor the post-translational modification processes involved is known. We report that in animal and humanTSEs, one or more lysines at residues 23, 24, and 27 of PrPSc are covalently modified with advanced glycosylation end products (AGEs), which may be carboxymethyl-lysine (CML), one of the structural varieties of AGEs. The arginine residue at position 37 may also be modified with AGE, but not the arginine residue at position 25. This result suggests that nonenzymatic glycation is one of the post-translational modifications of PrP(Sc). Furthermore, immunostaining studies indicate that, at least in clinically affected hamsters, astrocytes are the first site of this glycation process. 

Eur J Cancer Clin Oncol 1988 Jul;24(7):1179-83. Abnormal free fatty acids and cortisol concentrations in the serum of AIDS patients. Christeff N, Michon C, Goertz G, Hassid J, Matheron S, Girard PM, Coulaud JP, Nunez EA 

Lipids. 1996 Aug;31(8):829-37. Effect of dietary n-9 eicosatrienoic acid on the fatty acid composition of plasma lipid fractions and tissue phospholipids. Cleland LG, Neumann MA, Gibson RA, Hamazaki T, Akimoto K, James MJ. 

J Nutr. 1996 Jun;126(6):1534-40. Dietary (n-9) eicosatrienoic acid from a cultured fungus inhibits leukotriene B4 synthesis in rats and the effect is modified by dietary linoleic acid. Cleland LG, Gibson RA, Neumann MA, Hamazaki T, Akimoto K, James MJ. 

Br J Nutr. 2003 Oct;90(4):777-86. Fish-oil supplementation reduces stimulation of plasma glucose fluxes during exercise in untrained males. Delarue J, Labarthe F, Cohen R. 

Int J Circumpolar Health. 2001 Apr;60(2):143-9. Cod liver oil consumption, smoking, and coronary heart disease mortality: three counties, Norway. Egeland GM, Meyer HE, Selmer R, Tverdal A, Vollset SE. 

Prostaglandins Leukot Essent Fatty Acids. 2000 Mar;62(3):201-7. Effects of n-3 fatty acids on growth and survival of J774 macrophages. Fyfe DJ, Abbey M. 

Eur J Clin Nutr. 2003 Jun;57(6):793-800. Increased lipid peroxidation during long-term intervention with high doses of n-3 fatty acids (PUFAs) following an acute myocardial infarction. Grundt H, Nilsen DW, Mansoor MA, Nordoy A. 

Scand J Clin Lab Invest. 1988 Dec;48(8):813-6. Mechanisms for the serum lipid-lowering effect of n-3 fatty acids. Hagve TA, Christophersen BO. 

Am J Psychiatry. 2004 Mar;161(3):567-9. Is low dietary intake of omega-3 fatty acids associated with depression?Hakkarainen R, Partonen T, Haukka J, Virtamo J, Albanes D, Lonnqvist J. 

J Neurosci Res 1988 Aug;20(4):451-6. Role of arachidonic acid and other free fatty acids in mitochondrial dysfunction in brain ischemia. Hillered L, Chan PH. 

J Neurosci Res 1989 Oct;24(2):247-50. Brain mitochondrial swelling induced by arachidonic acid and other long chain free fatty acids. Hillered L, Chan PH. 

Endocrinology. 2003 Sep;144(9):3958-68. Diabetogenic impact of long-chain omega-3 fatty acids on pancreatic beta-cell function and the regulation of endogenous glucose production. Holness MJ, Greenwood GK, Smith ND, Sugden MC.

Lipids. 1997 Jul;32(7):745-51. Unusual effects of some vegetable oils on the survival time of stroke-prone spontaneously hypertensive rats. Huang MZ, Watanabe S, Kobayashi T, Nagatsu A, Sakakibara J, Okuyama H. 

Transplant Proc. 2001 Aug;33(5):2854-5. Evaluation of the effect of fish oil on cell kinetics: implications for clinical immunosuppression. Istfan NW, Khauli RB. Boston University School of Medicine, Massachusetts, USA. Cancer Res. 1989 Apr 15;49(8):1931-6. Effects of fish oil and corn oil diets on prostaglandin-dependent and myelopoiesis-associated immune suppressor mechanisms of mice bearing metastatic Lewis lung carcinoma tumors. Young MR, Young ME. Department of Research Services, Edward J. Hines, Jr. "The fish oil diet increased the frequency of myeloid progenitor cells in normal mice and in mice bearing small or large tumors. Concurrently, the fish oil diet stimulated the appearance of bone marrow-derived suppressor cells. When administered after the establishment of palpable primary tumors, a fish oil diet also increased the formation of pulmonary lung nodules." "These data show that a fish oil diet can minimize the immune suppression in tumor bearers when suppression is mediated by PGE2-producing suppressor cells, but can also induce myelopoietic stimulation leading to the appearance of bone marrow-derived suppressor cells and increased tumor metastasis." 

J Exp Med 1993 Dec 1;178(6):2261-5. Effect of dietary supplementation with n-9 eicosatrie

Show more