2015-12-10

         

…………………………………………………………………………………….



corbettreport

……….

……….

Published on Dec 6, 2015

SHOW NOTES: https://www.corbettreport.com/?p=17182

If you follow the mainstream media, you’ll probably only know the Seralini 2012 rat feeding study as “that GMO cancer study that got retracted.” You probably won’t know that the paper has since been republished and Seralini himself has won two court victories defending his work. Join me for today’s Thought For The Day as I break down the GMO truth that Monsanto doesn’t want you to know.

……….

Seralini’s team wins defamation and forgery court cases on GMO and pesticide research

On 25 November 2015, the High Court of Paris indicted Marc Fellous, former chairman of France’s Biomolecular Engineering Commission, for “forgery” and “the use of forgery”, in a libel trial that he lost to Prof Gilles-Eric Séralini. The Biomolecular Engineering Commission has authorised many GM crops for consumption.

The details of the case have not yet been publicly released but a source close to the case told GMWatch that Fellous had used or copied the signature of a scientist without his agreement to argue that Séralini and his co-researchers were wrong in their reassessment of Monsanto studies.

The Séralini team’s re-assessment reported finding signs of toxicity in the raw data from Monsanto’s own rat feeding studies with GM maize.

The sentence against Fellous has not yet been passed and is expected in June 2016.

Defamation case

The latest ruling marks a second court victory for Séralini’s team.

In September 2012, an article written by Jean-Claude Jaillette in Marianne magazine said that “researchers around the world” had voiced “harsh words” about the research of Séralini and his team on the toxic effects of a GMO and Roundup over a long term period – research that was supported by the independent organisation CRIIGEN. The journalist wrote of a “scientific fraud in which the methodology served to reinforce pre-determined results”.

Séralini, his team, and CRIIGEN challenged this allegation in a defamation lawsuit. They were assisted by the notaries Bernard Dartevelle and Cindy Gay.

On 6 November 2015, after a criminal investigation lasting three years, the 17th Criminal Chamber of the High Court of Paris passed sentence. Marianne magazine and its journalist were fined for public defamation of a public official and public defamation of the researchers and of CRIIGEN, which is chaired by Dr Joel Spiroux de Vendômois.

Read More Here

……….

Double standards used in evaluating GMO safety studies

An example of an inconclusive study that has not been retracted from FCT is the Monsanto study on the same GM maize variety that Séralini tested.

Scientific studies should be evaluated according to standards that are consistently and transparently applied to all studies, regardless of whether their findings are reassuring, surprising, or unpopular. Yet it appears that the Séralini study has been singled out for retraction under a criterion of “inconclusiveness” that has not been applied to other papers.

An example of an inconclusive study that has not been retracted from FCT is the Monsanto study on the same GM maize variety that Séralini tested (Hammond et al, 2004).[1] This study used the same strain of rat and analyzed blood and urine samples from the same number of animals as Séralini used in total.

Crucially, however, the Monsanto study was only 90 days in duration. Thus it was terminated a month before the more obvious pathologies began to appear in the Séralini study. Nevertheless, the data in the Monsanto study show statistically significant differences in multiple organ functions between the GM and non-GM feeding groups, which the Monsanto authors dismissed as not “biologically meaningful”, without proper scientific justification.

As a result, and of great importance from a public health perspective, this GM maize was passed by regulators as safe to consume on a life-long basis despite the fact that the Monsanto study was only 90 days in duration and contained scientifically questionable claims of statistically significant findings being termed as not “biologically meaningful”.

Read More Here

……….

19. Agribusiness Giants Attempt to Silence and Discredit Scientists Whose Research Reveals Herbicides’ Health Threats

October 1, 2014

Independent journalists, including E. Ann Clark, James Corbett, Rachel Aviv, and Democracy Now!, document how Big Agriculture giants Monsanto and Syngenta have attempted to silence the findings and destroy the reputations of scientists whose research shows that the companies’ herbicides pose serious threats to human health.

In September 2012, Dr. Gilles-Éric Séralini published research findings in the peer-reviewed Journal of Food and Chemical Toxicology. These findings showed the toxic impact of Monsanto’s herbicide and genetically modified corn—including adverse health effects on rats. However, after publication, the journal made the unprecedented decision to retract the study.

Journal editor Dr. A. Wallace Hayes admitted that none of the established criteria for retracting a study applied to the Séralini paper. However, as Clark and Corbett reported, a new connection between the journal and Monsanto might account for the retraction, as well as another retraction of a similar study from Brazil that demonstrated the toxic effects on mice of an insecticide that forms the basis of the Bt GMO crops. After these papers were published, the Journal of Food and Chemical Toxicology created a new position: the associate editor for biotechnology. The journal then selected Richard E. Goodman, from the University of Nebraska, to fill the position and preside over such retractions. As it turns out, Goodman worked in regulatory sciences for Monsanto from 1997 to 2004.

Read More Here

……….

Genetic Fallacy: How Monsanto Silences Scientific Dissent

corbettreport

……….

……….

Published on Dec 3, 2013

SUPPORT BOILINGFROGSPOST.COM: http://ur1.ca/g527g

TRANSCRIPT AND SOURCES: http://www.corbettreport.com/?p=8325

That a former Monsanto scientist should find himself in charge of a specially-created post at the very journal that published two landmark studies questioning the safety of that company’s products should surprise no one who is aware of the Monsanto revolving door. This door is responsible for literally dozens of Monsanto officials, lobbyists and consultants finding themselves in positions of authority in the government bodies that are supposedly there to regulate the company and its actions.

Find out more about Monsanto’s ability to suppress scientific dissent in this week’s edition of the BoilingFrogsPost.com Eyeopener report.

……….

Research

Republished study: long-term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize

Gilles-Eric Séralini1*, Emilie Clair1, Robin Mesnage1, Steeve Gress1, Nicolas Defarge1, Manuela Malatesta2, Didier Hennequin3 and Joël Spiroux de Vendômois1

* Corresponding author: Gilles-Eric Séralini criigen@criigen.info

Author Affiliations

1 Institute of Biology, EA 2608 and CRIIGEN and Risk Pole, MRSH-CNRS, Esplanade de la Paix, University of Caen, Caen 14032, Cedex, France

2 Department of Neurological, Neuropsychological, Morphological and Motor Sciences, University of Verona, Verona 37134, Italy

3 Risk Pole, MRSH-CNRS, Esplanade de la Paix, University of Caen, Caen 14032, Cedex, France

For all author emails, please log on.

Environmental Sciences Europe 2014, 26:14  doi:10.1186/s12302-014-0014-5

See related Commentary: http://www.enveurope.com/content/26/1/13

The electronic version of this article is the complete one and can be found online at: http://www.enveurope.com/content/26/1/14

Received:

22 March 2014

Accepted:

16 May 2014

Published:

24 June 2014

© 2014 Séralini et al.; licensee Springer

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background

The health effects of a Roundup-tolerant NK603 genetically modified (GM) maize (from 11% in the diet), cultivated with or without Roundup application and Roundup alone (from 0.1 ppb of the full pesticide containing glyphosate and adjuvants) in drinking water, were evaluated for 2 years in rats. This study constitutes a follow-up investigation of a 90-day feeding study conducted by Monsanto in order to obtain commercial release of this GMO, employing the same rat strain and analyzing biochemical parameters on the same number of animals per group as our investigation. Our research represents the first chronic study on these substances, in which all observations including tumors are reported chronologically. Thus, it was not designed as a carcinogenicity study. We report the major findings with 34 organs observed and 56 parameters analyzed at 11 time points for most organs.

Results

Biochemical analyses confirmed very significant chronic kidney deficiencies, for all treatments and both sexes; 76% of the altered parameters were kidney-related. In treated males, liver congestions and necrosis were 2.5 to 5.5 times higher. Marked and severe nephropathies were also generally 1.3 to 2.3 times greater. In females, all treatment groups showed a two- to threefold increase in mortality, and deaths were earlier. This difference was also evident in three male groups fed with GM maize. All results were hormone- and sex-dependent, and the pathological profiles were comparable. Females developed large mammary tumors more frequently and before controls; the pituitary was the second most disabled organ; the sex hormonal balance was modified by consumption of GM maize and Roundup treatments. Males presented up to four times more large palpable tumors starting 600 days earlier than in the control group, in which only one tumor was noted. These results may be explained by not only the non-linear endocrine-disrupting effects of Roundup but also by the overexpression of the EPSPS transgene or other mutational effects in the GM maize and their metabolic consequences.

Conclusion

Our findings imply that long-term (2 year) feeding trials need to be conducted to thoroughly evaluate the safety of GM foods and pesticides in their full commercial formulations.

Keywords:

Genetically modified; GMO; Roundup; NK603; Rat; Glyphosate-based herbicides; Endocrine disruption

Research

Empirical natural and social sciences produce knowledge (in German: Wissenschaften schaffen Wissen) which should describe and explain past and present phenomena and estimate their future development. To this end quantitative methods are used. Progress in science needs controversial debates aiming at the best methods as basis for objective, reliable and valid results approximating what could be the truth. Such methodological competition is the energy needed for scientific progress. In this sense, ESEU aims to enable rational discussions dealing with the article from G.-E. Séralini et al. (Food Chem. Toxicol. 2012, 50:4221–4231) by re-publishing it. By doing so, any kind of appraisal of the paper’s content should not be connoted. The only aim is to enable scientific transparency and, based on this, a discussion which does not hide but aims to focus methodological controversies. -Winfried Schröder, Editor of the Thematic Series “Implications for GMO-cultivation and monitoring” in Environmental Sciences Europe.

Background

There is an ongoing international debate as to the necessary length of mammalian toxicity studies, including metabolic analyses, in relation to the consumption of genetically modified (GM) plants [1]. Currently, no regulatory authority requires mandatory chronic animal feeding studies to be performed for edible genetically modified organisms (GMOs), or even short-term studies with blood analyses for the full commercial formulations of pesticides as sold and used, but only for the declared active principle alone. However, several 90-day rat feeding trials have been conducted by the agricultural biotechnology industry. These investigations mostly concern GM soy and maize that are engineered either to be herbicide-tolerant (to Roundup (R) in 80% of cases), or to produce a modified Bt toxin insecticide, or both. As a result, these GM crops contain new pesticide residues for which new maximum residue levels (MRL) have been established in some countries.

Though the petitioners conclude in general that no major physiological changes is attributable to the consumption of the GMO in subchronic toxicity studies [2–5], significant disturbances have been found and may be interpreted differently [6,7]. A detailed analysis of the data in the subchronic toxicity studies [2–5] has revealed statistically significant alterations in kidney and liver function that may constitute signs of the early onset of chronic toxicity. This may be explained at least in part by pesticide residues in the GM feed [6,7]. Indeed, it has been demonstrated that R concentrations in the range of 103 times below the MRL can induce endocrine disturbances in human cells [8] and toxic effects thereafter [9]. This may explain toxic effects seen in experiments in rats in vivo[10] as well as in farm animals [11]. After several months of consumption of an R-tolerant soy, the liver and pancreas of mice were affected, as highlighted by disturbances in sub-nuclear structure [12–14]. Furthermore, this toxic effect was reproduced by the application of R herbicide directly to hepatocytes in culture [15].

More recently, long-term and multi-generational animal feeding trials have been performed, with some possibly providing evidence of safety, while others conclude on the necessity of further investigation because of metabolic modifications [16]. However, in contrast with the study we report here, none of these previous investigations have included a detailed follow-up of the animals, including multiple (up to 11) blood and urine sampling over 2 years, and none has investigated either the GM NK603 R-tolerant maize or Roundup.

Furthermore, evaluation of long-term toxicity of herbicides is generally performed on mammalian physiology employing only their active principle, rather than the complete formulations as used in agriculture. This was the case for glyphosate (G) [17], the declared active chemical constituent of R. It is important to note that G is only able to efficiently penetrate target plant organisms with the help of adjuvants present in the various commercially used R formulations [18]. Even if G has shown to interact directly with the active site of aromatase at high levels [19], at low contaminating levels, adjuvants may be better candidates than G to explain the toxicity or endocrine disruptive side effects of R on human cells [8,20] and also in vivo for acute toxicity [21]. In this regard, it is noteworthy that the far greater toxicity of full agricultural formulations compared to declared supposed active principles alone has recently been demonstrated also for six other major pesticides tested in vitro[22]. When G residues are found in tap water, food, or feed, they arise from the total herbicide formulation although little data is available as to the levels of the R adjuvants in either the environment or food chain. Indeed, adjuvants are rarely monitored in the environment, but some widely used adjuvants (surfactants) such as nonylphenol ethoxylates, another ethoxylated surfactant like POEA present in R, are widely found in rivers in England and are linked with disruption of wildlife sexual reproduction [23]. Adjuvants are found in groundwater [24]. The half-life of POEA (21 to 42 days) is even longer than for G (7 to 14 days) in aquatic environments [25]. As a result, the necessity of studying the potential toxic effects of total chemical mixtures rather than single components has been strongly emphasized [26–28]. On this basis, the regular measurement of only G or other supposed active ingredients of pesticides in the environment constitute at best markers of full formulation residues. Thus, in the study of health effects, exposure to the diluted whole formulation may be more representative of environmental pollution than exposure to G alone.

With a view to address this lack of information, we performed a 2-year detailed rat feeding study. Our study was designed as a chronic toxicity study and as a direct follow-up to a previous investigation on the same NK603 GM maize conducted by the developer company, Monsanto [3]. A detailed critical analysis of the raw data of this subchronic 90-day rat feeding study revealed statistically significant differences in multiple organ function parameters, especially pertaining to the liver and kidneys, between the GM and non-GM maize-fed group [3,7]. However, Monsanto’s authors dismissed the findings as not ‘biologically meaningful’ [3], as was also the case with another GM corn [29]. The European Food Safety Authority (EFSA) accepted Monsanto’s interpretation on NK603 maize [30], like in all other cases.

Our study is the first and to date the only attempt to follow up Monsanto’s investigation and to determine whether the differences found in the NK603 GM maize-fed rats, especially with respect to liver and kidney function, were not biologically meaningful, as claimed, or whether they developed into serious diseases over an extended period of time.

The Monsanto authors adapted Guideline 408 of the Organization for Economic Co-operation and Development (OECD) for their experimental design [3]. Our study design was based on that of the Monsanto investigation in order to make the two experiments comparable, but we extended the period of observation from Monsanto’s 90 days to 2 years. We also used three doses of GMOs (instead of Monsanto’s two) and Roundup to determine treatment dose response, including any possible non-linear as well as linear effects. This allowed us to follow in detail the potential health effects and their possible origins due to the direct or indirect consequences of the genetic modification itself in the NK603 GM maize, or due to the R herbicide formulation used on the GM maize (and not G alone), or both. Because of recent reviews on GM foods indicating no specific risk of cancer [2,16], but indicating signs of hepatorenal dysfunction within 3 months [1,7], we had no reason to adopt a carcinogenesis protocol using 50 rats per group. However, we prolonged to 2 years the biochemical and hematological measurements and measurements of disease status, as allowed, for example, in OECD protocols 453 (combined chronic toxicity and carcinogenicity) and 452 (chronic toxicity). Both OECD 452 and 453 specify 20 rats per sex per group but require only 50% (ten per sex per group, the same number that we used in total) to be analyzed for biochemical and hematological parameters. Thus, these protocols yield data from the same number of rats as our experiment. This remains the highest number of rats regularly measured in a standard GM diet study, as well as for a full formulated pesticide at very low environmentally relevant levels.

We used the Sprague-Dawley strain of rat, as recommended for chronic toxicology tests by the National Toxicology Program in the USA [31], and as used by Monsanto in its 90-day study [3]. This choice is also consistent with the recommendation of the OECD that for a chronic toxicity test, rats of the same strain should be used as in studies on the same substance but of shorter duration [32]. We then also tested for the first time three doses (rather than the two usually employed in 90-day protocols) of the R-tolerant NK603 GM maize alone, the GM maize treated with R, and R alone at very low environmentally relevant doses, starting below the range of levels permitted by regulatory authorities in drinking water and in GM feed.

Overall, our study is the first in-depth life-long toxicology study on the full commercial Roundup formulation and NK603 GM maize, with observations on 34 organs and measurement of 56 parameters analyzed at 11 time points for most organs, and utilizing 3 doses. We report here the major toxicological findings on multiple organ systems. As there was no evidence in the literature on GM food safety evaluation to indicate anything to the contrary, this initial investigation was designed as a full chronic toxicity and not a carcinogenicity study. Thus, we monitored in details chronologically all behavioral and anatomical abnormalities including tumors. A full carcinogenicity study, which usually focuses only on observing incidence and type of cancers (not always all tumors), would be a rational follow-up investigation to a chronic toxicity study in which there is a serious suspicion of carcinogenicity. Such indications had not been previously reported for GM foods.

Our findings show that the differences in multiple organ functional parameters seen from the consumption of NK603 GM maize for 90 days [3,7] escalated over 2 years into severe organ damage in all types of test diets. This included the lowest dose of R administered (0.1 ppb, 50 ng/L G equivalent) of R formulation administered, which is well below permitted MRLs in both the USA (0.7 mg/L) [33] and European Union (100 ng/L) [34]. Surprisingly, there was also a clear trend in increased tumor incidence, especially mammary tumors in female animals, in a number of the treatment groups. Our data highlight the inadequacy of 90-day feeding studies and the need to conduct long-term (2 years) investigations to evaluate the life-long impact of GM food consumption and exposure to complete pesticide formulations.

Results

Biochemical analyses of the maize feed

Standard biochemical compositional analysis revealed no particular differences between the different maize types and diets, the GM and non-GM maize being classified as substantially equivalent, except for transgene DNA quantification. For example, there was no difference in total isoflavones. In addition, we also assayed for other specific compounds, which are not always requested for establishing substantial equivalence. This analysis revealed a consistent and statistically significant (p < 0.01) decrease in certain phenolic acids in treatment diets, namely ferulic and caffeic acids. Ferulic acid was decreased in both GM maize and GM maize + R diets by 16% to 30% in comparison to the control diet (889 ± 107, 735 ± 89, respectively, vs. control 1,057 ± 127 mg/kg) and caffeic acid in the same groups by 21% to 53% (17.5 ± 2.1, 10.3 ± 1.3 vs. control 22.1 ± 2.6 mg/kg).

Anatomopathological observations and liver parameters

All rats were carefully monitored during the experiment for behavior, appearance, palpable tumors, and infections. At least ten organs per animal were weighed and up to 34 analyzed postmortem, at the macroscopic and/or microscopic levels (Table 1). Due to the large quantity of data collected, it cannot all be shown in one report, but we present here the most important findings. There was no rejection by the animals of the diet with or without GM maize, nor any major difference in body weight (data not shown).

Table 1. Protocol used and comparison to existing assessment and to non-mandatory regulatory tests

The most affected organs in males were the liver, hepatodigestive tract, and kidneys (Table 2; Figure 1A,B,C,D,E,F,G,H,I). Liver abnormalities such as hepatic congestions and macroscopic and microscopic necrotic foci were 2.5 to 5.5 times more frequent in all treatments than in control groups, where only two rats out of ten were affected with one abnormality each. For instance, there were 5 abnormalities in total in the GMO 11% group (2.5 times higher than controls) and 11 in the GMO 22% group (5.5 times greater). In addition, by the end of the experiment, Gamma GT hepatic activity was increased, particularly in the GMO + R groups (up to 5.4 times higher), this probably being reflective of liver dysfunction. Furthermore, cytochrome P450 activity generally increased in the presence of R (either in drinking water or in the GM maize-containing diet) according to the dose and up to 5.7 times greater at the highest dose.

Table 2. Summary of the most frequent anatomical pathologies observed

Figure 1. Anatomopathological observations in rats fed GMO treated or not by Roundup and effects of Roundup alone. Macroscopic (A to D) and microscopic (A’ and C’) photographs show male left kidneys and livers (E to I) and female pituitaries (J to M), in accordance to Table 2. The number of each animal and its treatment is specified. Macroscopic pale spots (I) and microscopic necrotic foci in liver (G clear-cell focus, H basophilic focus with atypia), and marked or severe chronic progressive nephropathies, are illustrated. In females, pituitary adenomas (K to M) are shown and compared to control (J, rat number and C for control). Apostrophes after letters indicate organs from the same rat.

Transmission electron microscopic observations of liver samples confirmed changes for all treated groups in relation to glycogen dispersion or appearance in lakes, increase of residual bodies and enlargement of cristae in mitochondria (Figure 2, panels 2 to 4). The GM maize-fed groups either with or without R application showed a higher heterochromatin content and decreased nucleolar dense fibrillar components, implying a reduced level of mRNA and rRNA transcription. In the GMO + R group (at the highest dose), the smooth endoplasmic reticulum was drastically increased and nucleoli decreased in size, becoming more compact. In the R alone treatment groups, similar trends were observed, with a partial resumption of nucleolar activity at the highest dose.

Figure 2. Ultrastructure of hepatocytes in male rats from groups presenting the greatest degree of liver pathology. (1) Typical control rat hepatocyte (bar 2 μm except in 4). (2) Effects with Roundup at the lowest dose. Glycogen (G) is dispersed in the cytoplasm. L, lipid droplet; N, nucleus; R, rough endoplasmic reticulum. (3) Details of treatment effects with 22% dietary GMO (bar 1 μm). a, cluster of residual bodies (asterisks); b, mitochondria show many enlarged cristae (arrows). (4) Hepatocytes of animal fed GM maize (GMO) at 22% of total diet. Large lakes of glycogen occur in the cytoplasm. M, mitochondria.

Degenerating kidneys with turgid inflammatory areas demonstrated the increased incidence of marked and severe chronic progressive nephropathies, which were up to two fold higher in the 33% GM maize or lowest dose R treatment groups (Table 2; Figure 1, first line).

Biochemical analyses of blood and urine samples

Biochemical measurements of blood and urine were focused on samples taken at the 15th month time point, as this was the last sampling time when most animals were still alive (in treated groups 90% males, 94% females, and 100% controls). Statistical analysis of results employed OPLS-DA 2-class models built between each treated group per sex and controls. Only models with an explained variance R2(Y) ≥ 80%, and a cross-validated predictive ability Q2(Y) ≥ 60%, were used for selection of the discriminant variables (Figure 3), when their regression coefficients were significant at a 99% confidence level. Thus, in treated females, kidney failures appeared at the biochemical level (82% of the total disrupted parameters). Levels of Na and Cl or urea increased in urine with a concomitant decrease of the same ions in serum, as did the levels of P, K, and Ca. Creatinine and creatinine clearance decreased in urine for all treatment groups in comparison to female controls (Table 3). In GM maize-treated males (with or without R), 87% of discriminant variables were kidney-related, but the disrupted profiles were less obvious because of advanced chronic nephropathies and deaths. In summary, for all treatments and both sexes, 76% of the discriminant variables versus controls were kidney-related.

Figure 3. Orthogonal partial least squares-discriminant analysis (OPLS-DA) for biochemical data (females fed 33% GMO versus controls). (A) First, detailed examples of significant discriminant variables distribution between females fed 33% GMO (bold line) and controls (dotted line). On X axis, animals; on Y axis, serum or urine biochemical values for Na, Cl, estradiol, testosterone. (B) Wider view of OPLS-DA regression coefficients for predictive component, with jack-knifed confidence intervals at 99% confidence level, indicating discriminant parameters versus controls at month 15. U, urinary; UEx, excreted in urine during 24 h; APPT, activated partial thromboplastin time; MCV, mean corpuscular volume; PT, prothrombine time; RBC, red blood cells; ALT, alanine aminotransferase; MCHC, mean corpuscular hemoglobin concentration; A/G, albumin/globulin ratio; WBC, white blood cells; AST, aspartate aminotransferase. Profiles evidence kidney ion leakages and sex hormonal imbalance versus controls.

Table 3. Percentage variation of parameters indicating kidney failures of female animals

Furthermore, in females (Table 3), the androgen/estrogen balance in serum was modified by GM maize and R treatments (at least 95% confidence level, Figure 3). For male animals at the highest R treatment dose, levels of estrogens were more than doubled.

Tumor incidence

Tumors are reported in line with the requirements of OECD chronic toxicity protocols 452 and 453, which require all ‘lesions’ (which by definition include tumors) to be reported. These findings are summarized in Figure 4. The results are presented in the form of real-time cumulative curves (each step corresponds to an additional tumor in the group). Only the growing largest palpable growths (above a diameter of 17.5 mm in females and 20 mm in males) are presented (for example, see Figure 5A,B,C). These were found to be in 95% of cases non-regressive tumors (Figure 5D,E,F,G,H,I,J) and were not infectious nodules. These arose from time to time; then, most often disappeared and were not different from controls after bacterial analyses. The real tumors were recorded independently of their grade, but dependent on their morbidity, since non-cancerous tumors can be more lethal than those of cancerous nature, due to internal hemorrhaging or compression and obstruction of function of vital organs, or toxins or hormone secretions. These tumors progressively increased in size and number, but not proportionally to the treatment dose, over the course of the experiment (Figure 4). As in the case of rates of mortality (Figure 6), this suggests that a threshold in effect was reached at the lower doses. Tumor numbers were rarely equal but almost always more than in controls for all treated groups, often with a two- to threefold increase for both sexes. Tumors began to reach a large size on average 94 days before controls in treated females and up to 600 days earlier in two male groups fed with GM maize (11 and 22% with or without R).

Figure 4. Largest non-regressive tumors in rats fed GMO treated or not by Roundup and effects of Roundup alone. Rats were fed with NK603 GM maize (with or without application of Roundup) at three different doses (11%, 22%, and 33% in their diet; thin, medium, and bold lines, respectively) compared to the substantially equivalent closest isogenic non-GM maize (control, dotted line). Roundup was administered in drinking water at three increasing doses, same symbols, environmental (A), MRL in some agricultural GMOs (B), and half of minimal agricultural levels (C), see ‘Methods’). The largest tumors were palpable during the experiment and numbered from 20 mm in diameter for males and 17.5 mm for females. Above this size, 95% of growths were non-regressive tumors. Summary of all tumors are shown in the bar histograms: black, non-regressive large tumors; white, small internal tumors; grey, metastases.

Figure 5. Examples of female mammary tumors observed. Mammary tumors are evidenced (A, D, H, representative adenocarcinoma, from the same rat in a GMO group) and in Roundup and GMO + Roundup groups, two representative rats (B, C, E, F, I, J fibroadenomas) are compared to controls. A normal representative rat in controls is not shown, only a minority of them having tumors up to 700 days, in contrast with the majority affected in all treated groups. (G) The histological control.

Figure 6. Mortality of rats fed GMO treated or not with Roundup and effects of Roundup alone. The symbols of curves and treatments are explained in the caption of Figure 4. Lifespan during the experiment for the control group is represented by the vertical bar ± SEM (grey area). In bar histograms, the causes of mortality before the grey area are detailed in comparison to the controls (0). In black are the necessary euthanasia because of suffering in accordance with ethical rules (tumors over 25% body weight, more than 25% weight loss, hemorrhagic bleeding, etc.); and in hatched areas, spontaneous mortality.

In female animals, the largest tumors were in total five times more frequent than in males after 2 years, with 93% of these being mammary tumors. Adenomas, fibroadenomas, and carcinomas were deleterious to health due to their very large size (Figure 5A,B,C) rather than the grade of the tumor itself. Large tumor size caused impediments to either breathing or digestion and nutrition because of their thoracic or abdominal location and also resulted in hemorrhaging (Figure 5A,B,C). In addition, one metastatic ovarian cystadenocarcinoma and two skin tumors were identified. Metastases were observed in only two cases; one in a group fed with 11% GM maize and another in the highest dose of R treatment group.

Up to 14 months, no animals in the control groups showed any signs of palpable tumors, whilst 10% to 30% of treated females per group developed tumors, with the exception of one group (33% GMO + R). By the beginning of the 24th month, 50% to 80% of female animals had developed tumors in all treatment groups, with up to three tumors per animal, whereas only 30% of controls were affected. A summary of all mammary tumors at the end of the experiment, independent of size, is presented in Table 2. The same trend was observed in the groups receiving R in their drinking water (Figure 4, R treatment panels). The R treatment groups showed the greatest rates of tumor incidence, with 80% of animals affected (with up to three tumors for one female), in each group. Using a non-parametric multiple comparison analysis, mammary tumor incidence was significantly increased at the lowest dose of R compared to controls (p < 0.05, Kruskal-Wallis test with post hoc Dunn’s test). All females except one (with metastatic ovarian carcinoma) presented in addition mammary hypertrophies and in some cases hyperplasia with atypia (Table 2).

The second most affected organ in females was the pituitary gland, in general around two times more than in controls for most treatments (Table 2; Figure 1J,K,L,M). Again, at this level of examination, adenomas and/or hyperplasias and hypertrophies were noticed. For all R treatment groups, 70% to 80% of animals presented 1.4 to 2.4 times more abnormalities in this organ than controls.

The large palpable tumors in males (in kidney and mostly skin) were by the end of the experimental period on average twice as frequent as in controls, in which only one skin fibroma appeared during the 23rd month. At the end of the experiment, internal non-palpable tumors were added, and their sums were lower in males than in females. They were not significantly different from controls, although slightly increased in females (Figure 4, histogram insets).

Mortality

The rates of mortality in the various control and treatment groups are shown as raw data in Figure 6. Control male animals survived on average 624 ± 21 days, whilst females lived for 701 ± 20 days during the experiment, plus in each case, a 5-week starting age at reception of animals and a 3-week housing stabilization period. After mean survival time had elapsed, any deaths that occurred were considered to be largely due to aging. Before this period, 30% control males (three in total) and 20% females (only two) died spontaneously, while up to 50% males and 70% females died in some groups on diets containing the GM maize (Figure 6, panels GMO, GMO + R). However, the rate of mortality was not proportional to the treatment dose, reaching a threshold at the lowest (11%) or intermediate (22%) amounts of GM maize in the equilibrated diet, with or without the R application on the crop. It is noteworthy that the first two male rats that died in both GM maize-treated groups had to be euthanized due to Wilms’ kidney tumors that had grown by this time to over 25% of body weight. This was approximately a year before the first control animal died. The first female death occurred in the 22% GM maize feeding group and resulted from a mammary fibroadenoma 246 days before the first control female death. The maximum difference in males was five times more deaths occurring by the 17th month in the group consuming 11% GM maize and in females six times greater mortality by the 21st month on the 22% GM maize diet with and without R. In the female cohorts, there were two to three times more deaths in all treated groups compared with controls by the end of the experiment and deaths occurred earlier in general. Females were more sensitive to the presence of R in drinking water than males, as evidenced by a shorter lifespan (Figure 6, panels R). The general causes of death represented in histogram format within each of the panels in Figure 6, are linked mostly to mammary tumors in females and to problems in other organ systems in males.

Additional file 1. Biochemistry M15

Format: XLS Size: 140KB Download file

This file can be viewed with: Microsoft Excel Viewer

Additional file 2. List of blood and urine paramaters with sampling and unit detail

Format: PDF Size: 172KB Download file

This file can be viewed with: Adobe Acrobat Reader

Additional file 3. Mortality and tumors raw data

Format: XLSX Size: 122KB Download file

Additional file 4. Rats identification

Format: PDF Size: 90KB Download file

This file can be viewed with: Adobe Acrobat Reader

Additional file 5. Raw data legends

Format: DOCX Size: 14KB Download file

Discussion

This report describes the first long-term (2-year) rodent (rat) feeding study investigating possible toxic effects arising from consumption of an R-tolerant GM maize (NK603) and a complete commercial formulation of R herbicide. The aims of this investigation were essentially twofold. First, to evaluate whether the signs of toxicity, especially with respect to liver and kidney functions, seen after 90 days’ consumption of a diet containing NK603 R-tolerant GM maize [3,7] escalated into serious ill health or dissipated over an extended period of time. Second, to determine if low doses of full commercial R formulation at permitted levels were still toxic, as indicated by our previous in vitro studies [8,9]. The previous toxicity study with NK603 maize employed only this GM crop that had been sprayed with R during cultivation [3]. However, in our study presented here, in addition to extending the treatment period from 90 days to 2 years and in order to better ascertain the source of any ill health observed, we included additional test feeding groups. These consisted of NK603 maize grown without as well as with R application and R alone administered via drinking water. Furthermore, we used three levels of dosing in all cases rather than the two previously used [3], in order to highlight any dose response effects of a given treatment. It is also important to note that our study is the first to conduct blood, urine, and organ analyses from animals treated with the complete agricultural formulation of R and not just G alone, as measured by the manufacturer [35].

Our data show that the signs of liver and kidney toxicity seen at 90 days from the consumption of NK603 GM maize [3,7] do indeed escalate into severe disease over an extended period. Furthermore, similar negative health effects were observed in all treatment groups (NK603 GM maize with or without R application and R alone).

What is also evident from our data is that ill effects were not proportional to the dose of either the NK603 GM maize ± R or R alone. This suggests that the observed disease may result from endocrine disruptive effects, which are known to be non-monotonic. Similar degrees of pathological symptoms occurred from the lowest to the highest doses, suggesting a threshold effect [36]. This corresponds to levels likely to arise from consumption or environmental exposure, such as either 11% GM maize in food, or 50 ng/L G equivalent of R-formulation, a level which can be found in some contaminated drinking tap waters and which falls within authorized limits.

Death in male rats was mostly due to the development of severe hepatorenal insufficiencies, confirming the first signs of toxicity observed in 90-day feeding trials with NK603 GM maize [7]. In females, kidney ion leakage was evident at a biochemical level at month 15, when severe nephropathies were observed in dead male animals at postmortem, at the anatomopathological level. Early signs of toxicity at month 3 in kidney and liver were also observed for 19 edible GM crops containing pesticide residues [1]. It is known that only elderly male rats are sensitive to chronic progressive nephropathies [37]. Therefore, the disturbed kidney functional parameters may have been induced by the reduced levels of phenolic acids in the GM maize feed used in our study, since caffeic and ferulic acids are beneficial to the kidney as they prevent oxidative stress [38,39]. This possibility is consistent with our previous observation that plant extracts containing ferulic and caffeic acids were able to promote detoxification of human embryonic kidney cells after culture in the presence of R [40]. It is thus possible that NK603 GM maize consu

Show more