CDC Guideline for Prescribing Opioids for Chronic Pain — United States, 2016 | MMWR
MMWR Early Release
Vol. 65, Early Release
March 15, 2016
PDF
CDC Guideline for Prescribing Opioids for Chronic Pain — United States, 2016
Early Release / March 15, 2016 / 65
Prepared by; Deborah Dowell, MD1; Tamara M. Haegerich, PhD; Roger Chou, MD1 (View author affiliations)
View suggested citation
Summary
This guideline provides recommendations for primary care clinicians who are prescribing opioids for chronic pain outside of active cancer treatment, palliative care, and end-of-life care. The guideline addresses 1) when to initiate or continue opioids for chronic pain; 2) opioid selection, dosage, duration, follow-up, and discontinuation; and 3) assessing risk and addressing harms of opioid use. CDC developed the guideline using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework, and recommendations are made on the basis of a systematic review of the scientific evidence while considering benefits and harms, values and preferences, and resource allocation. CDC obtained input from experts, stakeholders, the public, peer reviewers, and a federally chartered advisory committee. It is important that patients receive appropriate pain treatment with careful consideration of the benefits and risks of treatment options. This guideline is intended to improve communication between clinicians and patients about the risks and benefits of opioid therapy for chronic pain, improve the safety and effectiveness of pain treatment, and reduce the risks associated with long-term opioid therapy, including opioid use disorder, overdose, and death. CDC has provided a checklist for prescribing opioids for chronic pain (http://stacks.cdc.gov/view/cdc/38025) as well as a website (http://www.cdc.gov/drugoverdose/prescribingresources.html) with additional tools to guide clinicians in implementing the recommendations.
Top
Introduction
Background
Opioids are commonly prescribed for pain. An estimated 20% of patients presenting to physician offices with noncancer pain symptoms or pain-related diagnoses (including acute and chronic pain) receive an opioid prescription (1). In 2012, health care providers wrote 259 million prescriptions for opioid pain medication, enough for every adult in the United States to have a bottle of pills (2). Opioid prescriptions per capita increased 7.3% from 2007 to 2012, with opioid prescribing rates increasing more for family practice, general practice, and internal medicine compared with other specialties (3). Rates of opioid prescribing vary greatly across states in ways that cannot be explained by the underlying health status of the population, highlighting the lack of consensus among clinicians on how to use opioid pain medication (2).
Prevention, assessment, and treatment of chronic pain are challenges for health providers and systems. Pain might go unrecognized, and patients, particularly members of racial and ethnic minority groups, women, the elderly, persons with cognitive impairment, and those with cancer and at the end of life, can be at risk for inadequate pain treatment (4). Patients can experience persistent pain that is not well controlled. There are clinical, psychological, and social consequences associated with chronic pain including limitations in complex activities, lost work productivity, reduced quality of life, and stigma, emphasizing the importance of appropriate and compassionate patient care (4). Patients should receive appropriate pain treatment based on a careful consideration of the benefits and risks of treatment options.
Chronic pain has been variably defined but is defined within this guideline as pain that typically lasts >3 months or past the time of normal tissue healing (5). Chronic pain can be the result of an underlying medical disease or condition, injury, medical treatment, inflammation, or an unknown cause (4). Estimates of the prevalence of chronic pain vary, but it is clear that the number of persons experiencing chronic pain in the United States is substantial. The 1999–2002 National Health and Nutrition Examination Survey estimated that 14.6% of adults have current widespread or localized pain lasting at least 3 months (6). Based on a survey conducted during 2001–2003 (7), the overall prevalence of common, predominantly musculoskeletal pain conditions (e.g., arthritis, rheumatism, chronic back or neck problems, and frequent severe headaches) was estimated at 43% among adults in the United States, although minimum duration of symptoms was not specified. Most recently, analysis of data from the 2012 National Health Interview Study showed that 11.2% of adults report having daily pain (8). Clinicians should consider the full range of therapeutic options for the treatment of chronic pain. However, it is hard to estimate the number of persons who could potentially benefit from opioid pain medication long term. Evidence supports short-term efficacy of opioids for reducing pain and improving function in noncancer nociceptive and neuropathic pain in randomized clinical trials lasting primarily ≤12 weeks (9,10), and patients receiving opioid therapy for chronic pain report some pain relief when surveyed (11–13). However, few studies have been conducted to rigorously assess the long-term benefits of opioids for chronic pain (pain lasting >3 months) with outcomes examined at least 1 year later (14). On the basis of data available from health systems, researchers estimate that 9.6–11.5 million adults, or approximately 3%–4% of the adult U.S. population, were prescribed long-term opioid therapy in 2005 (15).
Opioid pain medication use presents serious risks, including overdose and opioid use disorder. From 1999 to 2014, more than 165,000 persons died from overdose related to opioid pain medication in the United States (16). In the past decade, while the death rates for the top leading causes of death such as heart disease and cancer have decreased substantially, the death rate associated with opioid pain medication has increased markedly (17). Sales of opioid pain medication have increased in parallel with opioid-related overdose deaths (18). The Drug Abuse Warning Network estimated that >420,000 emergency department visits were related to the misuse or abuse of narcotic pain relievers in 2011, the most recent year for which data are available (19). Although clinical criteria have varied over time, opioid use disorder is a problematic pattern of opioid use leading to clinically significant impairment or distress. This disorder is manifested by specific criteria such as unsuccessful efforts to cut down or control use and use resulting in social problems and a failure to fulfill major role obligations at work, school, or home (20). This diagnosis has also been referred to as “abuse or dependence” and “addiction” in the literature, and is different from tolerance (diminished response to a drug with repeated use) and physical dependence (adaptation to a drug that produces symptoms of withdrawal when the drug is stopped), both of which can exist without a diagnosed disorder. In 2013, on the basis of DSM-IV diagnosis criteria, an estimated 1.9 million persons abused or were dependent on prescription opioid pain medication (21). Having a history of a prescription for an opioid pain medication increases the risk for overdose and opioid use disorder (22–24), highlighting the value of guidance on safer prescribing practices for clinicians. For example, a recent study of patients aged 15–64 years receiving opioids for chronic noncancer pain and followed for up to 13 years revealed that one in 550 patients died from opioid-related overdose at a median of 2.6 years from their first opioid prescription, and one in 32 patients who escalated to opioid dosages >200 morphine milligram equivalents (MME) died from opioid-related overdose (25).
This guideline provides recommendations for the prescribing of opioid pain medication by primary care clinicians for chronic pain (i.e., pain conditions that typically last >3 months or past the time of normal tissue healing) in outpatient settings outside of active cancer treatment, palliative care, and end-of-life care. Although the guideline does not focus broadly on pain management, appropriate use of long-term opioid therapy must be considered within the context of all pain management strategies (including nonopioid pain medications and nonpharmacologic treatments). CDC’s recommendations are made on the basis of a systematic review of the best available evidence, along with input from experts, and further review and deliberation by a federally chartered advisory committee. The guideline is intended to ensure that clinicians and patients consider safer and more effective treatment, improve patient outcomes such as reduced pain and improved function, and reduce the number of persons who develop opioid use disorder, overdose, or experience other adverse events related to these drugs. Clinical decision making should be based on a relationship between the clinician and patient, and an understanding of the patient’s clinical situation, functioning, and life context. The recommendations in the guideline are voluntary, rather than prescriptive standards. They are based on emerging evidence, including observational studies or randomized clinical trials with notable limitations. Clinicians should consider the circumstances and unique needs of each patient when providing care.
Rationale
Primary care clinicians report having concerns about opioid pain medication misuse, find managing patients with chronic pain stressful, express concern about patient addiction, and report insufficient training in prescribing opioids (26). Across specialties, physicians believe that opioid pain medication can be effective in controlling pain, that addiction is a common consequence of prolonged use, and that long-term opioid therapy often is overprescribed for patients with chronic noncancer pain (27). These attitudes and beliefs, combined with increasing trends in opioid-related overdose, underscore the need for better clinician guidance on opioid prescribing. Clinical practice guidelines focused on prescribing can improve clinician knowledge, change prescribing practices (28), and ultimately benefit patient health.
Professional organizations, states, and federal agencies (e.g., the American Pain Society/American Academy of Pain Medicine, 2009; the Washington Agency Medical Directors Group, 2015; and the U.S. Department of Veterans Affairs/Department of Defense, 2010) have developed guidelines for opioid prescribing (29–31). Existing guidelines share some common elements, including dosing thresholds, cautious titration, and risk mitigation strategies such as using risk assessment tools, treatment agreements, and urine drug testing. However, there is considerable variability in the specific recommendations (e.g., range of dosing thresholds of 90 MME/day to 200 MME/day), audience (e.g., primary care clinicians versus specialists), use of evidence (e.g., systematic review, grading of evidence and recommendations, and role of expert opinion), and rigor of methods for addressing conflict of interest (32). Most guidelines, especially those that are not based on evidence from scientific studies published in 2010 or later, also do not reflect the most recent scientific evidence about risks related to opioid dosage.
This CDC guideline offers clarity on recommendations based on the most recent scientific evidence, informed by expert opinion and stakeholder and public input. Scientific research has identified high-risk prescribing practices that have contributed to the overdose epidemic (e.g., high-dose prescribing, overlapping opioid and benzodiazepine prescriptions, and extended-release/long-acting [ER/LA] opioids for acute pain) (24,33,34). Using guidelines to address problematic prescribing has the potential to optimize care and improve patient safety based on evidence-based practice (28), as well as reverse the cycle of opioid pain medication misuse that contributes to the opioid overdose epidemic.
Scope and Audience
This guideline is intended for primary care clinicians (e.g., family physicians and internists) who are treating patients with chronic pain (i.e., pain lasting >3 months or past the time of normal tissue healing) in outpatient settings. Prescriptions by primary care clinicians account for nearly half of all dispensed opioid prescriptions, and the growth in prescribing rates among these clinicians has been above average (3). Primary care clinicians include physicians as well as nurse practitioners and physician assistants. Although the focus is on primary care clinicians, because clinicians work within team-based care, the recommendations refer to and promote integrated pain management and collaborative working relationships with other providers (e.g., behavioral health providers, pharmacists, and pain management specialists). Although the transition from use of opioid therapy for acute pain to use for chronic pain is hard to predict and identify, the guideline is intended to inform clinicians who are considering prescribing opioid pain medication for painful conditions that can or have become chronic.
This guideline is intended to apply to patients aged ≥18 years with chronic pain outside of palliative and end-of-life care. For this guideline, palliative care is defined in a manner consistent with that of the Institute of Medicine as care that provides relief from pain and other symptoms, supports quality of life, and is focused on patients with serious advanced illness. Palliative care can begin early in the course of treatment for any serious illness that requires excellent management of pain or other distressing symptoms (35). End-of-life care is defined as care for persons with a terminal illness or at high risk for dying in the near future in hospice care, hospitals, long-term care settings, or at home. Patients within the scope of this guideline include cancer survivors with chronic pain who have completed cancer treatment, are in clinical remission, and are under cancer surveillance only. The guideline is not intended for patients undergoing active cancer treatment, palliative care, or end-of-life care because of the unique therapeutic goals, ethical considerations, opportunities for medical supervision, and balance of risks and benefits with opioid therapy in such care.
The recommendations address the use of opioid pain medication in certain special populations (e.g., older adults and pregnant women) and in populations with conditions posing special risks (e.g., a history of substance use disorder). The recommendations do not address the use of opioid pain medication in children or adolescents aged <18 years. The available evidence concerning the benefits and harms of long-term opioid therapy in children and adolescents is limited, and few opioid medications provide information on the label regarding safety and effectiveness in pediatric patients. However, observational research shows significant increases in opioid prescriptions for pediatric populations from 2001 to 2010 (36), and a large proportion of adolescents are commonly prescribed opioid pain medications for conditions such as headache and sports injuries (e.g., in one study, 50% of adolescents presenting with headache received a prescription for an opioid pain medication) (37,38). Adolescents who misuse opioid pain medication often misuse medications from their own previous prescriptions (39), with an estimated 20% of adolescents with currently prescribed opioid medications reporting using them intentionally to get high or increase the effects of alcohol or other drugs (40). Use of prescribed opioid pain medication before high school graduation is associated with a 33% increase in the risk of later opioid misuse (41). Misuse of opioid pain medications in adolescence strongly predicts later onset of heroin use (42). Thus, risk of opioid medication use in pediatric populations is of great concern. Additional clinical trial and observational research is needed, and encouraged, to inform development of future guidelines for this critical population.
The recommendations are not intended to provide guidance on use of opioids as part of medication-assisted treatment for opioid use disorder. Some of the recommendations might be relevant for acute care settings or other specialists, such as emergency physicians or dentists, but use in these settings or by other specialists is not the focus of this guideline. Readers are referred to other sources for prescribing recommendations within acute care settings and in dental practice, such as the American College of Emergency Physicians’ guideline for prescribing of opioids in the emergency department (43); the American Society of Anesthesiologists’ guideline for acute pain management in the perioperative setting (44); the Washington Agency Medical Directors’ Group Interagency Guideline on Prescribing Opioids for Pain, Part II: Prescribing Opioids in the Acute and Subacute Phase (30); and the Pennsylvania Guidelines on the Use of Opioids in Dental Practice (45). In addition, given the challenges of managing the painful complications of sickle cell disease, readers are referred to the NIH National Heart, Lung, and Blood Institute’s Evidence Based Management of Sickle Cell Disease Expert Panel Report for management of sickle cell disease (46).
Top
Guideline Development Methods
Guideline Development Using the Grading of Recommendations Assessment, Development, and Evaluation Method
CDC developed this guideline using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) method (http://www.gradeworkinggroup.org). This method specifies the systematic review of scientific evidence and offers a transparent approach to grading quality of evidence and strength of recommendations. The method has been adapted by the CDC Advisory Committee on Immunization Practices (ACIP) (47). CDC has applied the ACIP translation of the GRADE framework in this guideline. Within the ACIP GRADE framework, the body of evidence is categorized in a hierarchy. This hierarchy reflects degree of confidence in the effect of a clinical action on health outcomes. The categories include type 1 evidence (randomized clinical trials or overwhelming evidence from observational studies), type 2 evidence (randomized clinical trials with important limitations, or exceptionally strong evidence from observational studies), type 3 evidence (observational studies or randomized clinical trials with notable limitations), and type 4 evidence (clinical experience and observations, observational studies with important limitations, or randomized clinical trials with several major limitations). Type of evidence is categorized by study design as well as limitations in study design or implementation, imprecision of estimates, variability in findings, indirectness of evidence, publication bias, magnitude of treatment effects, dose-response gradient, and a constellation of plausible biases that could change observations of effects. Type 1 evidence indicates that one can be very confident that the true effect lies close to that of the estimate of the effect; type 2 evidence means that the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different; type 3 evidence means that confidence in the effect estimate is limited and the true effect might be substantially different from the estimate of the effect; and type 4 evidence indicates that one has very little confidence in the effect estimate, and the true effect is likely to be substantially different from the estimate of the effect (47,48). When no studies are present, evidence is considered to be insufficient. The ACIP GRADE framework places recommendations in two categories, Category A and Category B. Four major factors determine the category of the recommendation: the quality of evidence, the balance between desirable and undesirable effects, values and preferences, and resource allocation (cost). Category A recommendations apply to all persons in a specified group and indicate that most patients should receive the recommended course of action. Category B recommendations indicate that there should be individual decision making; different choices will be appropriate for different patients, so clinicians must help patients arrive at a decision consistent with patient values and preferences, and specific clinical situations (47). According to the GRADE methodology, a particular quality of evidence does not necessarily imply a particular strength of recommendation (48–50). Category A recommendations can be made based on type 3 or type 4 evidence when the advantages of a clinical action greatly outweigh the disadvantages based on a consideration of benefits and harms, values and preferences, and costs. Category B recommendations are made when the advantages and disadvantages of a clinical action are more balanced. GRADE methodology is discussed extensively elsewhere (47,51). The U.S. Preventive Services Task Force (USPSTF) follows different methods for developing and categorizing recommendations (http://www.uspreventiveservicestaskforce.org). USPSTF recommendations focus on preventive services and are categorized as A, B, C, D, and I. Under the Affordable Care Act, all “nongrandfathered” health plans (that is, those health plans not in existence prior to March 23, 2010 or those with significant changes to their coverage) and expanded Medicaid plans are required to cover preventive services recommended by USPSTF with a category A or B rating with no cost sharing. The coverage requirements went into effect September 23, 2010. Similar requirements are in place for vaccinations recommended by ACIP, but do not exist for other recommendations made by CDC, including recommendations within this guideline.
A previously published systematic review sponsored by the Agency for Healthcare Research and Quality (AHRQ) on the effectiveness and risks of long-term opioid treatment of chronic pain (14,52) initially served to directly inform the recommendation statements. This systematic clinical evidence review addressed the effectiveness of long-term opioid therapy for outcomes related to pain, function, and quality of life; the comparative effectiveness of different methods for initiating and titrating opioids; the harms and adverse events associated with opioids; and the accuracy of risk-prediction instruments and effectiveness of risk mitigation strategies on outcomes related to overdose, addiction, abuse, or misuse. For the current guideline development, CDC conducted additional literature searches to update the evidence review to include more recently available publications and to answer an additional clinical question about the effect of opioid therapy for acute pain on long-term use. More details about the literature search strategies and GRADE methods applied are provided in the Clinical Evidence Review (http://stacks.cdc.gov/view/cdc/38026). CDC developed GRADE evidence tables to illustrate the quality of the evidence for each clinical question.
As identified in the AHRQ-sponsored clinical evidence review, the overall evidence base for the effectiveness and risks of long-term opioid therapy is low in quality per the GRADE criteria. Thus, contextual evidence is needed to provide information about the benefits and harms of nonpharmacologic and nonopioid pharmacologic therapy and the epidemiology of opioid pain medication overdose and inform the recommendations. Further, as elucidated by the GRADE Working Group, supplemental information on clinician and patient values and preferences and resource allocation can inform judgments of benefits and harms and be helpful for translating the evidence into recommendations. CDC conducted a contextual evidence review to supplement the clinical evidence review based on systematic searches of the literature. The review focused on the following four areas: effectiveness of nonpharmacologic and nonopioid pharmacologic treatments; benefits and harms related to opioid therapy (including additional studies not included in the clinical evidence review such as studies that evaluated outcomes at any duration or used observational study designs related to specific opioid pain medications, high-dose opioid therapy, co-prescription of opioids with other controlled substances, duration of opioid use, special populations, risk stratification/mitigation approaches, and effectiveness of treatments for addressing potential harms of opioid therapy); clinician and patient values and preferences; and resource allocation. CDC constructed narrative summaries of this contextual evidence and used the information to support the clinical recommendations. More details on methods for the contextual evidence review are provided in the Contextual Evidence Review (http://stacks.cdc.gov/view/cdc/38027).
On the basis of a review of the clinical and contextual evidence (review methods are described in more detail in subsequent sections of this report), CDC drafted recommendation statements focused on determining when to initiate or continue opioids for chronic pain; opioid selection, dosage, duration, follow-up, and discontinuation; and assessing risk and addressing harms of opioid use. To help assure the draft guideline’s integrity and credibility, CDC then began a multistep review process to obtain input from experts, stakeholders, and the public to help refine the recommendations.
Solicitation of Expert Opinion
CDC sought the input of experts to assist in reviewing the evidence and providing perspective on how CDC used the evidence to develop the draft recommendations. These experts, referred to as the “Core Expert Group” (CEG) included subject matter experts, representatives of primary care professional societies and state agencies, and an expert in guideline development methodology.* CDC identified subject matter experts with high scientific standing; appropriate academic and clinical training and relevant clinical experience; and proven scientific excellence in opioid prescribing, substance use disorder treatment, and pain management. CDC identified representatives from leading primary care professional organizations to represent the audience for this guideline. Finally, CDC identified state agency officials and representatives based on their experience with state guidelines for opioid prescribing that were developed with multiple agency stakeholders and informed by scientific literature and existing evidence-based guidelines.
Prior to their participation, CDC asked potential experts to reveal possible conflicts of interest such as financial relationships with industry, intellectual preconceptions, or previously stated public positions. Experts could not serve if they had conflicts that might have a direct and predictable effect on the recommendations. CDC excluded experts who had a financial or promotional relationship with a company that makes a product that might be affected by the guideline. CDC reviewed potential nonfinancial conflicts carefully (e.g., intellectual property, travel, public statements or positions such as congressional testimony) to determine if the activities would have a direct and predictable effect on the recommendations. CDC determined the risk of these types of activities to be minimal for the identified experts. All experts completed a statement certifying that there was no potential or actual conflict of interest. Activities that did not pose a conflict (e.g., participation in Food and Drug Administration [FDA] activities or other guideline efforts) are disclosed.
CDC provided to each expert written summaries of the scientific evidence (both the clinical and contextual evidence reviews conducted for this guideline) and CDC’s draft recommendation statements. Experts provided individual ratings for each draft recommendation statement based on the balance of benefits and harms, evidence strength, certainty of values and preferences, cost, recommendation strength, rationale, importance, clarity, and ease of implementation. CDC hosted an in-person meeting of the experts that was held on June 23–24, 2015, in Atlanta, Georgia, to seek their views on the evidence and draft recommendations and to better understand their premeeting ratings. CDC sought the experts’ individual opinions at the meeting. Although there was widespread agreement on some of the recommendations, there was disagreement on others. Experts did not vote on the recommendations or seek to come to a consensus. Decisions about recommendations to be included in the guideline, and their rationale, were made by CDC. After revising the guideline, CDC sent written copies of it to each of the experts for review and asked for any additional comments; CDC reviewed these written comments and considered them when making further revisions to the draft guideline. The experts have not reviewed the final version of the guideline.
Federal Partner Engagement
Given the scope of this guideline and the interest of agencies across the federal government in appropriate pain management, opioid prescribing, and related outcomes, CDC invited its National Institute of Occupational Safety and Health and CDC’s federal partners to observe the expert meeting, provide written comments on the full draft guideline after the meeting, and review the guideline through an agency clearance process; CDC reviewed comments and incorporated changes. Interagency collaboration will be critical for translating these recommendations into clinical practice. Federal partners included representatives from the Substance Abuse and Mental Health Services Administration, the National Institute on Drug Abuse, FDA, the U.S. Department of Veterans Affairs, the U.S. Department of Defense, the Office of the National Coordinator for Health Information Technology, the Centers for Medicare and Medicaid Services, the Health Resources and Services Administration, AHRQ, and the Office of National Drug Control Policy.
Stakeholder Comment
Given the importance of the guideline for a wide variety of stakeholders, CDC also invited review from a Stakeholder Review Group (SRG) to provide comment so that CDC could consider modifications that would improve the recommendations’ specificity, applicability, and ease of implementation. The SRG included representatives from professional organizations that represent specialties that commonly prescribe opioids (e.g., pain medicine, physical medicine and rehabilitation), delivery systems within which opioid prescribing occurs (e.g., hospitals), and representation from community organizations with interests in pain management and opioid prescribing.* Representatives from each of the SRG organizations were provided a copy of the guideline for comment. Each of these representatives provided written comments. Once input was received from the full SRG, CDC reviewed all comments and carefully considered them when revising the draft guideline.
Constituent Engagement
To obtain initial perspectives from constituents on the recommendation statements, including clinicians and prospective patients, CDC convened a constituent engagement webinar and circulated information about the webinar in advance through announcements to partners. CDC hosted the webinar on September 16 and 17, 2015, provided information about the methodology for developing the guideline, and presented the key recommendations. A fact sheet was posted on the CDC Injury Center website (http://www.cdc.gov/injury) summarizing the guideline development process and clinical practice areas addressed in the guideline; instructions were included on how to submit comments via email. CDC received comments during and for 2 days following the first webinar. Over 1,200 constituent comments were received. Comments were reviewed and carefully considered when revising the draft guideline.
Peer Review
Per the final information quality bulletin for peer review (https://www.whitehouse.gov/sites/default/files/omb/memoranda/fy2005/m05-03.pdf), peer review requirements applied to this guideline because it provides influential scientific information that could have a clear and substantial impact on public- and private-sector decisions. Three experts independently reviewed the guideline to determine the reasonableness and strength of recommendations; the clarity with which scientific uncertainties were clearly identified; and the rationale, importance, clarity, and ease of implementation of the recommendations.* CDC selected peer reviewers based on expertise, diversity of scientific viewpoints, and independence from the guideline development process. CDC assessed and managed potential conflicts of interest using a process similar to the one as described for solicitation of expert opinion. No financial interests were identified in the disclosure and review process, and nonfinancial activities were determined to be of minimal risk; thus, no significant conflict of interest concerns were identified. CDC placed the names of peer reviewers on the CDC and the National Center for Injury Prevention and Control Peer Review Agenda websites that are used to provide information about the peer review of influential documents. CDC reviewed peer review comments and revised the draft guideline accordingly.
Public Comment
To obtain comments from the public on the full guideline, CDC published a notice in the Federal Register (80 FR 77351) announcing the availability of the guideline and the supporting clinical and contextual evidence reviews for public comment. The comment period closed January 13, 2016. CDC received more than 4,350 comments from the general public, including patients with chronic pain, clinicians, families who have lost loved ones to overdose, medical associations, professional organizations, academic institutions, state and local governments, and industry. CDC reviewed each of the comments and carefully considered them when revising the draft guideline.
Federal Advisory Committee Review and Recommendation
The National Center for Injury Prevention and Control (NCIPC) Board of Scientific Counselors (BSC) is a federal advisory committee that advises and makes recommendations to the Secretary of the Department of Health and Human Services, the Director of CDC, and the Director of NCIPC.* The BSC makes recommendations regarding policies, strategies, objectives, and priorities, and reviews progress toward injury and violence prevention. CDC sought the BSC’s advice on the draft guideline. BSC members are special government employees appointed as CDC advisory committee members; as such, all members completed an OGE Form 450 to disclose relevant interests. BSC members also reported on their disclosures during meetings. Disclosures for the BSC are reported in the guideline.
To assist in guideline review, on December 14, 2015, via Federal Register notice, CDC announced the intent to form an Opioid Guideline Workgroup (OGW) to provide observations on the draft guideline to the BSC. CDC provided the BSC with the draft guideline as well as summaries of comments provided to CDC by stakeholders, constituents, and peer reviewers, and edits made to the draft guideline in response. During an open meeting held on January 7, 2016, the BSC recommended the formation of the OGW. The OGW included a balance of perspectives from audiences directly affected by the guideline, audiences that would be directly involved with implementing the recommendations, and audiences qualified to provide representation. The OGW comprised clinicians, subject matter experts, and a patient representative, with the following perspectives represented: primary care, pain medicine, public health, behavioral health, substance abuse treatment, pharmacy, patients, and research.* Additional sought-after attributes were appropriate academic and clinical training and relevant clinical experience; high scientific standing; and knowledge of the patient, clinician, and caregiver perspectives. In accordance with CDC policy, two BSC committee members also served as OGW members, with one serving as the OGW Chair. The professional credentials and interests of OGW members were carefully reviewed to identify possible conflicts of interest such as financial relationships with industry, intellectual preconceptions, or previously stated public positions. Only OGW members whose interests were determined to be minimal were selected. When an activity was perceived as having the potential to affect a specific aspect of the recommendations, the activity was disclosed, and the OGW member was recused from discussions related to that specific aspect of the recommendations (e.g., urine drug testing and abuse-deterrent formulations). Disclosures for the OGW are reported. CDC and the OGW identified ad-hoc consultants to supplement the workgroup expertise, when needed, in the areas of pediatrics, occupational medicine, obstetrics and gynecology, medical ethics, addiction psychiatry, physical medicine and rehabilitation, guideline development methodology, and the perspective of a family member who lost a loved one to opioid use disorder or overdose.
The BSC charged the OGW with reviewing the quality of the clinical and contextual evidence reviews and reviewing each of the recommendation statements and accompanying rationales. For each recommendation statement, the OGW considered the quality of the evidence, the balance of benefits and risks, the values and preferences of clinicians and patients, the cost feasibility, and the category designation of the recommendation (A or B). The OGW also reviewed supplementary documents, including input provided by the CEG, SRG, peer reviewers, and the public. OGW members discussed the guideline accordingly during virtual meetings and drafted a summary report of members’ observations, including points of agreement and disagreement, and delivered the report to the BSC.
NCIPC announced an open meeting of the NCIPC BSC in the Federal Register on January 11, 2015. The BSC met on January 28, 2016, to discuss the OGW report and deliberate on the draft guideline itself. Members of the public provided comments at this meeting. After discussing the OGW report, deliberating on specific issues about the draft guideline identified at the meeting, and hearing public comment, the BSC voted unanimously: to support the observations made by the OGW; that CDC adopt the guideline recommendations that, according to the workgroup’s report, had unanimous or majority support; and that CDC further consider the guideline recommendations for which the group had mixed opinions. CDC carefully considered the OGW observations, public comments, and BSC recommendations, and revised the guideline in response.
Top
Summary of the Clinical Evidence Review
Primary Clinical Questions
CDC conducted a clinical systematic review of the scientific evidence to identify the effectiveness, benefits, and harms of long-term opioid therapy for chronic pain, consistent with the GRADE approach (47,48). Long-term opioid therapy is defined as use of opioids on most days for >3 months. A previously published AHRQ-funded systematic review on the effectiveness and risks of long-term opioid therapy for chronic pain comprehensively addressed four clinical questions (14,52). CDC, with the assistance of a methodology expert, searched the literature to identify newly published studies on these four original questions. Because long-term opioid use might be affected by use of opioids for acute pain, CDC subsequently developed a fifth clinical question (last in the series below), and in collaboration with a methodologist conducted a systematic review of the scientific evidence to address it. In brief, five clinical questions were addressed:
The effectiveness of long-term opioid therapy versus placebo, no opioid therapy, or nonopioid therapy for long term (≥1 year) outcomes related to pain, function, and quality of life, and how effectiveness varies according to the type/cause of pain, patient demographics, and patient comorbidities (Key Question [KQ] 1).
The risks of opioids versus placebo or no opioids on abuse, addiction, overdose, and other harms, and how harms vary according to the type/cause of pain, patient demographics, patient comorbidities, and dose (KQ2).
The comparative effectiveness of opioid dosing strategies (different methods for initiating and titrating opioids; immediate-release versus ER/LA opioids; different ER/LA opioids; immediate- release plus ER/LA opioids versus ER/LA opioids alone; scheduled, continuous versus as-needed dosing; dose escalation versus dose maintenance; opioid rotation versus maintenance; different strategies for treating acute exacerbations of chronic pain; decreasing opioid doses or tapering off versus continuation; and different tapering protocols and strategies) (KQ3).
The accuracy of instruments for predicting risk for opioid overdose, addiction, abuse, or misuse; the effectiveness of risk mitigation strategies (use of risk prediction instruments); effectiveness of risk mitigation strategies including opioid management plans, patient education, urine drug testing, prescription drug monitoring program (PDMP) data, monitoring instruments, monitoring intervals, pill counts, and abuse-deterrent formulations for reducing risk for opioid overdose, addiction, abuse, or misuse; and the comparative effectiveness of treatment strategies for managing patients with addiction (KQ4).
The effects of prescribing opioid therapy versus not prescribing opioid therapy for acute pain on long-term use (KQ5).
The review was focused on the effectiveness of long-term opioid therapy on long-term (>1 year) outcomes related to pain, function, and quality of life to ensure that findings are relevant to patients with chronic pain and long-term opioid prescribing. The effectiveness of short-term opioid therapy has already been established (10). However, opioids have unique effects such as tolerance and physical dependence that might influence assessments of benefit over time. These effects raise questions about whether findings on short-term effectiveness of opioid therapy can be extrapolated to estimate benefits of long-term therapy for chronic pain. Thus, it is important to consider studies that provide data on long-term benefit. For certain opioid-related harms (overdose, fractures, falls, motor vehicle crashes), observational studies were included with outcomes measured at shorter intervals because such outcomes can occur early during opioid therapy, and such harms are not captured well in short-term clinical trials. A detailed listing of the key questions is provided in the Clinical Evidence Review (http://stacks.cdc.gov/view/cdc/38026).
Clinical Evidence Systematic Review Methods
Complete methods and data for the 2014 AHRQ report, upon which this updated systematic review is based, have been published previously (14,52). Study authors developed the protocol using a standardized process (53) with input from experts and the public and registered the protocol in the PROSPERO database (54). For the 2014 AHRQ report, a research librarian searched MEDLINE, the Cochrane Central Register of Controlled Trials, the Cochrane Database of Systematic Reviews, PsycINFO, and CINAHL for English-language articles published January 2008 through August 2014, using search terms for opioid therapy, specific opioids, chronic pain, and comparative study designs. Also included were relevant studies from an earlier review (10) in which searches were conducted without a date restriction, reference lists were reviewed, and ClinicalTrials.gov was searched. CDC updated the AHRQ literature search using the same search strategies as in the original review including studies published before April, 2015. Seven additional studies met inclusion criteria and were added to the review. CDC used the GRADE approach outlined in the ACIP Handbook for Developing Evidence-Based Recommendations (47) to rate the quality of evidence for the full body of evidence (evidence from the 2014 AHRQ review plus the update) for each clinical question. Evidence was categorized into the following types: type 1 (randomized clinical trials or overwhelming evidence from observational studies), type 2 (randomized clinical trials with important limitations, or exceptionally strong evidence from observational studies), type 3 (observational studies, or randomized clinical trials with notable limitations), or type 4 (clinical experience and observations, observational studies with important limitations, or randomized clinical trials with several major limitations). When no studies were present, evidence was considered to be insufficient. Per GRADE methods, type of evidence was categorized by study design as well as a function of limitations in study design or implementation, imprecision of estimates, variability in findings, indirectness of evidence, publication bias, magnitude of treatment effects, dose-response gradient, and constellation of plausible biases that could change effects. Results were synthesized qualitatively, highlighting new evidence identified during the update process. Meta-analysis was not attempted due to the small numbers of studies, variability in study designs and clinical heterogeneity, and methodological shortcomings of the studies. More detailed information about data sources and searches, study selection, data extraction and quality assessment, data synthesis, and update search yield and new evidence for the current review is provided in the Clinical Evidence Review (http://stacks.cdc.gov/view/cdc/38026).
Summary of Findings for Clinical Questions
The main findings of this updated review are consistent with the findings of the 2014 AHRQ report (14). In summary, evidence on long-term opioid therapy for chronic pain outside of end-of-life care remains limited, with insufficient evidence to determine long-term benefits versus no opioid therapy, though evidence suggests risk for serious harms that appears to be dose-dependent. These findings supplement findings from a previous review of the effectiveness of opioids for adults with chronic noncancer pain. In this previous review, based on randomized trials predominantly ≤12 weeks in duration, opioids were found to be moderately effective for pain relief, with small benefits for functional outcomes; although estimates vary, based on uncontrolled studies, a high percentage of patients discontinued long-term opioid use because of lack of efficacy and because of adverse events (10).
The GRADE evidence summary with type of evidence ratings for the five clinical questions for the current evidence review are outlined ( Table 1). This summary is based on studies included in the AHRQ 2014 review (35 studies) plus additional studies identified in the updated search (seven studies). Additional details on findings from the original review are provided in the full 2014 AHRQ report (14,52). Full details on the clinical evidence review findings supporting this guideline are provided in the Clinical Evidence Review (http://stacks.cdc.gov/view/cdc/38026).
Effectiveness
For KQ1, no study of opioid therapy versus placebo, no opioid therapy, or nonopioid therapy for chronic pain evaluated long-term (≥1 year) outcomes related to pain, function, or quality of life. Most placebo-controlled randomized clinical trials were ≤6 weeks in duration. Thus, the body of evidence for KQ1 is rated as insufficient (0 studies contributing) (14).
Harms
For KQ2, the body of evidence is rated as type 3 (12 studies contributing; 11 from the original review plus one new study). One fair-quality cohort study found that long-term opioid therapy is associated with increased risk for an opioid abuse or dependence diagnosis (as defined by ICD-9-CM codes) versus no opioid prescription (22). Rates of opioid abuse or dependence diagnosis ranged from 0.7% with lower-dose (≤36 MME) chronic therapy to 6.1% with higher-dose (≥120 MME) chronic therapy, versus 0.004% with no opioids prescribed. Ten fair-quality uncontrolled studies reported estimates of opioid abuse, addiction, and related outcomes (55–65). In primary care settings, prevalence of opioid dependence (using DSM-IV criteria) ranged from 3% to 26% (55,56,59). In pain clinic settings, prevalence of addiction ranged from 2% to 14% (57,58,60,61,63–65).
Factors associated with increased risk for misuse included history of substance use disorder, younger age, major depression, and use of psychotropic medications (55,62). Two studies reported on the association between opioid use and risk for overdose (66,67). One large fair-quality retrospective cohort study found that recent opioid use was associated with increased risk for any overdose events and serious overdose events versus nonuse (66). It also found higher doses associated with increased risk. Relative to 1–19 MME/day, the adjusted hazard ratio (HR) for any overdose event (consisting of mostly nonfatal overdose) was 1.44 for 20 to 49 MME/day, 3.73 for 50–99 MME/day, and 8.87 for ≥100 MME/day. A similar pattern was observed for serious overdose. A good-quality population-based, nested case-control study also found a dose-dependent association with risk for overdose death (67). Relative to 1–19 MME/day, the adjusted odds ratio (OR) was 1.32 for 20–49 MME/day, 1.92 for 50–99 MME/day, 2.04 for 100–199 MME/day, and 2.88 for ≥200 MME/day.
Findings of increased fracture risk for current opioid use, versus nonuse, were mixed in two studies (68,69). Two studies found an association between opioid use and increased risk for cardiovascular events (70,71). Indirect evidence was found for endocrinologic harms (increased use of medications for erectile dysfunction or testosterone from one previously included study; laboratory-defined androgen deficiency from one newly reviewed study) (72,73). One study found that opioid dosages ≥20 MME/day were associated with increased odds of road trauma among drivers (74).
Opioid Dosing Strategies
For KQ3, the body of evidence is rated as type 4 (14 studies contributing; 12 from the original review plus two new studies). For initiation and titration of opioids, the 2014 AHRQ report found insufficient evidence from three fair-quality, open-label trials to determine comparative effectiveness of ER/LA versus immediate-release opioids for titrating patients to stable pain control (75,76). One new fair-quality cohort study of Veterans Affairs patients found initiation of therapy with an ER/LA opioid associated with greater risk for nonfatal overdose than initiation with an immediate-release opioid, with risk greatest in the first 2 weeks after initiation of treatment (77).
For comparative effectiveness and harms of ER/LA opioids, the 2014 AHRQ report included three randomized, head-to-head trials of various ER/LA opioids that found no clear differences in 1-year outcomes related to pain or function (78–80) but had methodological shortcomings. A fair-quality retrospective cohort study based on national Veterans Health Administration system pharmacy data found that methadone was associated with lower overall risk for all-cause mortality versus morphine (81), and a fair-quality retrospective cohort study based on Oregon Medicaid data found no statistically significant differences between methadone and long-acting