2013-12-28



AEHF concept
(click to view full)

The USA’s new Advanced Extremely High Frequency (AEHF) satellites will support twice as many tactical networks as the current Milstar II satellites, while providing 10-12 times the bandwidth capacity and 6 times the data rate transfer speed. With the cancellation of the higher-capacity TSAT program, AEHF will form the secure, hardened backbone of the Pentagon’s future Military Satellite Communications (MILSATCOM) architecture, with a mission set that includes nuclear command and control. Its companion Family of Advanced Beyond-line-of-sight Terminals (FAB-T) program will give the US military more modern, higher-bandwidth receiving capabilities, and add more flexibility on the front lines. The program has international components, and partners currently include Britain, Canada, and the Netherlands.

This article offers a look at the AEHF system’s rationale and capabilities, while offering insight into some of the program’s problems, and an updated timeline covering over $5 billion worth of contracts since the program’s inception.

The AEHF Program

Program Status and Budgets

The decline in GAO program coverage creates some challenges in making apples to apples comparisons, but the trends are clear. Like a number of American satellite development programs, AEHF has been cited for cost overruns and schedule slips. Part of the reason involves the US National Security Agency’s failure to furnish key cryptography requirements and specifications, and mechanical and construction difficulties were also involved.



Yo-yoing constellation size played a role of its own in program total changes, while creating cost spikes for individual satellites. Satellites 5 & 6 are expected to cost almost double the average for SV 1-3, owing to a production line that was interrupted and restarted because the decisions to add more satellites came after a gap of 4 years. That was too late to keep the production line from closing temporarily, and re-starts are difficult and expensive.

Note that USAF budgets do not include the US Army’s small participation, contributions from international partners, or RDT&E funding beyond FY 2014:



Past and Future

C4ISR Future?
(click to expand)

The AEHF partnership program currently involves 4 operational and 2 reserve satellites, and includes Britain, Canada, and the Netherlands.

AEHF began as a program in April 1999, and development began in September 2001. The production decision was made in June 2004, and the original intent was to launch the first satellite in late 2007. NSA delays in providing key cryptographic requirements ended up being very expensive, and other technical difficulties also pushed the program back. First launch didn’t take place until August 2010.

Along the way, the AEHF program’s size has yo-yoed. In December 2002, optional satellites 4 and 5 were deleted from the program, with the intention of making AEHF only an interim bridge to the larger Transformational Satellite Network (T-SAT) and its ultra-high bandwidth laser interlinks. As TSAT faltered, however, the AEHF bridge became the destination.

The first indication of shifts in the program came when the Pentagon’s April 2008 Selected Acquisition Reports confirmed that the program had expanded to add AEHF-4. The TSAT successor program was restructured, but in June 2009, Secretary of Defense Gates finally lowered the boom and confirmed that the Pentagon intended to kill TSAT, leaving Advanced EHF satellites as the military’s main future guarantors of secure, hardened bandwidth. In response, the US military expanded and internationalized the Wideband Global SATCOM (WGS), restored AEHF SV-5 to the hardened constellation, and eventually added a 6th AEHF satellite in April 2010.

The 5th and 6th satellites are currently planned as a reserve that will replace the first 2. Even so, the USAF is considering a 7th and 8th satellite, as it works through an Analysis of Alternatives for its “Resilient Basis for SATCOM (RBS) in Joint Operations” study. The exact nature of the AEHF Follow-On will be informed by this protected MILSATCOM AoA.

Down here on Earth, the companion FAB-T (Family of Advanced Beyond-line-of-sight Terminals) development effort aimed to create a family of software-defined radios that could become a common terminal for the next generation of High Data Satellite Communications, including AEHF, Wideband Gapfiller, and other future satellite systems. It’s aimed at aircraft, and the NSA’s poor handling of its cryptographic challenges contributed to the overall program’s delays and cost overruns.

Beyond Boeing’s FAB-T, a number of vendors are developing and fielding SATCOM solutions that are compatible with AEHF, for use by land and naval assets.

Launch Plans and Dates

The Process
click for video

AEHF Space Vehicle-1 (SV-1) launched in August 2010, almost 3 years later than originally planned, but slightly earlier than some 2010 reports had expected. It encountered serious propulsion problems, which left it well short of its operational orbit, but ground control found some timely workarounds the eventually got the satellite to its orbital plane. The flip side is that instead of conducting on-orbit testing in August 2010, the USAF had to wait until November 2011. Meanwhile, AEHF SV-2 and SV-3 were ready, but SV-1′s technical failure and delayed on-orbit tests left them on hold.

AEHF SV-2 was slated for launch in May 2011, but was eventually launched on May 4/12.

AEHF SV-3 missed its January 2012 window. A full launch schedule meant that the launch ended up taking place on Sept 18/13.

AEHF SV-4 is still expected to launch in Q3 (summer) FY 2017, which tracks with the 4-year delay before the additional order.

SV-5 was supposed to follow in 2018, and SV-6 in 2020, but they’ve been shifted to a reserve role instead. Despite the US military’s exploding demand for bandwidth, they’ll be used as end-of-life replacements for SV-1 and SV-2, or as an emergency replacement option for any AEHF satellite that malfunctions or is destroyed.

The AEHF Satellites

Advanced EHF satellites will provide at least 10 times greater total capacity, and offer channel data rates 6 times higher, than current Milstar II communications satellites. These new hardened and crosslinked satellites are designed to be very hard to jam, while surviving shocks that can include EMP radiation surges from atmospheric nuclear blasts. They’ll offer 24-hour low, medium, and high data rate satellite connectivity from 65 N to 65 S latitude, worldwide.

Each Advanced EHF satellite employs more than 50 communications channels via multiple, simultaneous downlinks. To accomplish their goal of 10x capacity and 6x channel data of existing Milstar II satellites, Advanced EHF adds new higher data-rate transmission modes:

Each satellite uses than 800 ASICs (chips) delivered by Honeywell Aerospace in Plymouth, MN, and BAE Systems of Arlington, VA. These customized chips benefit from general advances in chip density and speed since the existing MILSTAR constellation was built, which means reduced weight. Each AEHF payload includes:

25 computers

Almost 1 million lines of software code

70 unique monolithic microwave integrated circuit (MMIC) chip designs – almost 18,000 total MMICs

More than 50 unique integrated microwave assemblies and hybrid designs – over 13,000 total.

AEHF is X-band capable for high-bandwidth data rates, in addition to the Milstar low data rate and medium data rate modes that ensure backward compatibility. The crosslinks eliminate the need to route messages via terrestrial systems, which cuts some of the latency associated with satellite links.

Bandwidth is already a significant constraint in theater, and these higher data rates will allow more transmission of tactical military communications into remote areas, to include real-time video, battlefield maps, and targeting data.

The AEHF Satellites: Contracts & Key Events

Payload testing
(click to view full)

The Pentagon DefenseLINK summaries of awarded AEHF contracts were unusually informative, providing a commendable level of insight into the program and its challenges. Note, especially, the effects of key delays from NSA re: cryptography in the early years. We’ve also broken out the AEHF’s FAB-T terminals that will connect the military to the AEHF network and other satellites. Though the satellites and terminals are intertwined on many levels, and some cryptography-related contracts may mention neither but apply to both, separation of these contracts adds more clarity.

As of January 2013, Lockheed Martin is under contract for 6 satellites.

Unless otherwise specified, the USAF Headquarters Space and Missile Systems Center in Los Angeles, CA has issued the following requisitions under contract #F04701-02-C-0002:

Satellites FY 2014

SV-4 launch prep.

NGC on AEHF

Dec 27/13: SV-4 launch prep. Lockheed Martin Space Systems Co., Sunnyvale, CA receives a $116.1 million cost-plus-incentive-fee contract modification for AEHF SV-4 (q.v. Dec 15/10) launch operations, including support to integrate the satellite into the launch rocket. Launch preparation activities begin at launch minus 12 months, and include an early orbit operations rehearsal campaign alongside the physical preparations.

$2 million in USAF FY 2014 missile procurement funds are committed immediately. Work will be performed at Sunnyvale, CA, and El Segundo, CA, and is expected to be complete July 31/19. The USAF Space and Missile Systems Center, PKJ, Los Angeles Air Force Base, CA, is the contracting activity (F04701-02-C-0002, PO 0548).

Satellites FY 2013

SV-5 & SV-6; SAR is sort of good news; Canada begins using AEHF.

Encapsulation
(click to view full)

Sept 18/13: AEHF-3 launch. A Delta V 531 rocket blasts off from Cape Canaveral, and successfully launches AEHF-3. The satellite will spend the next 110 days thrusting to raise its orbit, followed by about 60 days of on-orbit testing. It’s ULA’s 40th mission with the Atlas V EELV.

AEHF-3 was encapsulated in its 5m diameter fairing on Sept 11/13. Sources: ULA | USAF Los Angeles AFB | Lockheed Martin.

AEHF-3 launched

Sept 16/13: IOC Delay. Inside Defense Reports that the USAF is citing Software Development Difficulties as the reason for delaying AEHF’s Initial Operational Capability designation by a year. Source: Inside Defense, “Air Force Delays Key AEHF Milestone One Year, Citing Software Development Difficulties”.

IOC delayed

Sept 12/13: Netherlands. Lockheed Martin reveals that in July 2013, the Dutch tested engaging AEHF-1 and AEHF-2, exchanging voice and data communications with the U.S. and Canada by connecting to the AEHF-2 satellite, crosslinking with AEHF-1, then downlinking to the U.S. Navy terminal in San Diego and a Canadian terminal at Shirley’s Bay, Ontario. They also completed their first local AEHF call from ship to shore, using international versions of the Navy Multi-Band and SMART-T terminals. Source: Lockheed Martin, Sept 12/13 release.

June 20/13: Canada. A U.S.-Canada team has successfully communicated with the USAF’s 4th Space Operations Squadron at Schriever Air Force Base, CO, using AEHF-1 satellite and a SMART-T terminal variant to exchange data from a location near Ottawa, Canada. Follow-on tests involved multiple Navy Multi-Band IP variant terminals exchanging data over AEHF networks.

Canada is the 1st international partner to reach this point, and will continue testing for several months as their forces move toward initial operational capability. Britain and the Netherlands are scheduled to complete their first terminal connections by the end of 2013. Lockheed Martin.

May 24/13: SAR. The Pentagon finally releases its Dec 31/12 Selected Acquisitions Report [PDF], and AEHF is a good news story. Not completely good news, given the raised costs for these satellites thanks to the production gap, but $500 million is always nice:

“Advanced Extremely High Frequency (AEHF) Satellite – The AEHF program is comprised of two subprograms, Space Vehicles 1-4 and Space Vehicles 5-6. Only the Space Vehicles 5-6 subprogram had selected cost changes in the December 2012 SAR. AEHF Space Vehicles 5-6 – Subprogram costs decreased $510.4 million (-14.6%) from $3,488.2 million to $2,977.8 million, due primarily to a reduced estimate to reflect program efficiencies for production and launch operations for Space Vehicles 5-6 (-$507.1 million). The savings were applied to higher Air Force needs.”

SAR: good news, sort of

April 10/13: FY 2014 Budget. The President releases a proposed budget at last, the latest in modern memory. The Senate and House were already working on budgets in his absence, but the Pentagon’s submission is actually important to proceedings going forward. See ongoing DID coverage.

For AEHF, the 2014 budget continues to reduce annual funding through FY 2017, but the block buy of SV-5 and SV-6 is on track. That budget is $2.59 billion maximum, based on $227 million in FY 2011 for long lead time parts, an unfinalized contract with a $2.199 billion maximum for production and launch, and $164 million for potential Engineering Change Orders (ECOs).

There are a few important changes, beginning with having SV-5 and SV-6 “replace AEHF-1 and AEHF-2 at the end of their useful life,” instead of launching to address the US military’s exploding demand for bandwidth. The program has also extended. Instead of terminating in 2018, the budget suddenly adds advance procurement in FY 2016 – 2017, and a big FY 2018 spike for 2 clones of SV-5/6. AEHF SV-7 and SV-8 are really just placeholders so far, as the USAF works through an Analysis of Alternatives for its Resilient Basis for SATCOM (RBS) in Joint Operations study. The exact nature of the AEHF Follow-On will be informed by the protected MILSATCOM AoA.

Jan 3/13: SV-5/6. Lockheed Martin Space Systems Co., Sunnyvale, CA receives a $1.937 billion contract modification for AEHF Space Vehicle 5 and 6 “Production Launch Operations.” When we add ancillary and long-lead item contracts announced to date, the total so far for SV-5 and SV-6 comes to $2,469.2 million, or about $1.235 billion per satellite:

Jan 3/13: $1,936.5 (main)

Sept 17/12: $43.0 (crypto)

June 25/12: $249.0 (antennas)

May 10/12: $13.5 (parts)

Dec 5/11: $167.2 (long-lead)

Nov 16/11: $60.0 (long-lead)

As noted above, the need for a production line restart created a huge cost increase. Work will be performed in Sunnyvale and El Segundo, CA, and is expected to be complete by Jan 24/22. Note that substantially the same announcement was made on Dec 28/12 (FA8808-12-C-0010).

SV-5 & SV-6 main contract

Satellites FY 2012

AEHF-1 and 2.

AEHF-2 launch
(click for video)

Sept 24/12: AEHF-2 ready. The satellite completes its on-orbit testing successfully. Testing began with single-satellite testing, followed by a period of crosslink testing between AEHF-1 and AEHF-2, and culminating with testing in the operational Milstar constellation. USAF.

Sept 17/12: SV-5/6. Lockheed Martin Space Systems in Sunnyvale, CA receives a $43 million contract modification for AEHF SV-6 Crypto Availability KI-54D. Decoded, that means they’ll produce/order and then install the satellite’s “black box” encoding/ decoding module for secure communications.

Work will be performed Camden, NJ and El Segundo, CA (Northrop Grumman, sub-contractor), and is expected to be complete by Oct 16/15 (F04701-02-C-0002, PO 0544).

Aug 10/12: AEHF-2 on-orbit. AEHF-2 arrives at its geostationary orbit test location and altitude. Unlike AEHF-1, this one went smoothly: 4 Liquid Apogee Engine burns to get above the densest Van Allen radiation belts, deployment of the solar arrays, then 47 Hall Current Thruster burns over an 85-day period. Payload activation and about 2 months of on-orbit testing are next. USAF.

June 25/12: SV-5/6. Lockheed Martin in Sunnyvale, CA receives a $249 million firm-fixed-price contract for AEHF SV-5 and SV-6 antennas and flight materials. That kind of hardened bandwidth in space doesn’t come cheap. Work will be performed in Sunnyvale, CA, and will be complete by Nov 1/12 (FA8808-12-C-0010, PO 0001).

May 10/12: SV-5/6. Lockheed Martin Space Systems in Sunnyvale, CA receives a $13.5 million firm-fixed-price contract for Space Vehicle 5/6 production. Specifically, they’ll supply a gimbal mechanism and beam select switch parts.

Discussion with Lockheed Martin confirms that this is for AEHF. Work will be performed in Sunnyvale, CA until Dec 30/13 (FA8808-12-C-0010).

Feb 27/12 – May 4/12: AEHF-2 delivery & launch. Lockheed Martin delivers AEHF-2 to the Air Force on Feb 27/12, after keeping it in storage since the end of 2010. The satellite was scheduled for launch on April 27/12 from Cape Canaveral, using an Atlas V rocket. Encapsulation took place on April 21/12 at the Astrotech Space Operations facility in Titusville, FL, but the launch date slipped to May 4/12.

The launched from Cape Canaveral Air Force Station was successful. AEHF SV-2 will take about 110 days to fly to its final orbit, followed by about 120 days of on-orbit testing, before it is transferred to the 14th Air Force for Satellite Control Authority. USAF | ULA | Lockheed Martin | Dutch MvD [in Dutch].

AEHF-2 launch

Dec 5/11: SV-5/6 lead-in. Lockheed Martin Space Systems Corp. in Sunnyvale, CA receives a $167.2 million firm-fixed-price and cost-plus-incentive-fee contract modification, to buy more AEHF SV-5 & SV-6 long lead time materials. This comes on top of the $60 million Nov 16/11 announcement, and includes the basic long-lead parts for Lockheed Martin’s electronic boxes and core structure, and for Northrop Grumman’s payload. These parts have a 24-week (about 6 month) lead time, and will support the coming SV 5/6 production contract.

Work will be performed in Sunnyvale, CA (F04701-02-C-0002, PO 0528).

Dec 2/11: Support. Lockheed Martin Space Systems Corp. in Sunnyvale, CA receives a $312.2 million cost-plus-incentive-fee contract modification for AEHF satellite program engineering support from Dec 1/11 to Dec 31/14.

Work will be performed at Redondo Beach, CA, and could include “on-orbit anomaly resolution and investigation” (vid. AEHF-1′s tribulations), flight and payload software sustainment after on-orbit tests are done, Networked AEHF System Tested tool sustainment, mission control familiarization, and development test. They’ll also provide hardware, software, training and logistics support, technical order maintenance, system security and information assurance engineering, support for AEHF and Milstar combined constellation integration transition and test activities, coordination with the Milstar O&M contractor, satellite database updates for Milstar and AEHF, and on-site technical support for satellite operations at Schriever AFB, CO, and Vandenberg AFB, CA. The USAF Space and Missile Systems Center’s Military Satellite Communications Systems Directorate in Los Angeles, CA manages the contract (F04701-02-C-0002, PO 0454).

Nov 16/11: SV-5/6 lead-in. Lockheed Martin Space Systems in Sunnyvale, CA received a $60 million firm-fixed-price and cost-plus-award-fee contract modification for AEHF SV-5 & SV-6 long lead time materials. The USAF Space and Missile Systems Center’s Military Satellite Communications Systems Directorate in El Segundo, CA manages the contract (F04701-02-C-002, PO 0525).

Nov 3/11: AEHF-1. The USAF announces that AEHF SV-1 has completed initial activation of its communications payload, and has begun on-orbit testing. This included successful deployment of the payload wings, the Gimbal Dish antennas, and the Advanced Anti-Jam Nulling antennas, as well as log-ons and data communications using communication terminals located at Schriever AFB, CO, and M.I.T/Lincoln Labs, MA.

A combined team of Air Force, Aerospace Corp., Lockheed Martin, and Northrop Grumman personnel have worked on activation, and SMC MILSATCOM Systems Director Dave Madden believes that by the end of November, they’ll have enough data to make a decision on whether or not to launch AEHF SV-2 in April 2012.

Oct 25/11: The USAF announces that AEHF-1 has finally reached its designated orbital slot, 14 months after launch. The process required approximately 500 thruster burns, but they still expect to get the required 14 years of mission life from the satellite, even though onboard fuel is directly correlated with mission life. Other US satellites have lasted longer than expected in orbit, so it’s hard to evaluate the USAF’s expectation without knowing the before/after confidence intervals, safety margins, etc. Time will tell.

The next step is a 4-month detailed test and checkout phase of all spacecraft systems, which is actually the most critical on-orbit phase. If the satellite’s other systems are performing as expected, the Space and Missile Systems Center plans to transfer satellite command authority to USAF Space Command’s 14th Air Force in early 2012. USAF.

Huge save: AEHF-1 makes it!

Oct 4/11: AEHF-1. The Space & Missile systems Center at Los Angeles AFB says that AEHF-1 is going to be a bit late to its orbital slot. It will arrive in late October instead of today, “while maintaining the safety of the vehicle and conserving on-board fuel.” Burning the Hall Current Thrusters to make up for the Liquid Apogee engine’s problems has a price, as fuel is the main determinant of satellite lifespan in orbit. The MILSATCOM Systems Directorate says that when they achieve the desired orbit, AEHF-1 will maintain the same expected capabilities they were estimating back in June.

Satellites FY 2011

AEHF-1 not where it should be. SV-4. Cost increases; layoffs.

AEHF-1 recovery award
(click for video)

Sept 30/11: Support. Lockheed Martin Space Systems Corp. in Sunnyvale, CA received a $9.8 million cost plus award fee contract modification to extend AEHF sustaining engineering support by 2 more months, from Sept 30/11 through Nov 20/11. Support is provided for MilStar and AEHF satellite operations at Schriever Air Force Base, CO and Vandenberg Air Force Base, CA, and includes on-orbit anomaly resolution and investigation, flight and payload software sustainment, Networked AEHF System Tested Tool sustainment, support for mission control segment Increment 5 familiarization and development test, mission control segment Increments 4 and 5 software maintenance, and on-site technical support.

The USAF Missile Systems Center Military Satellite Communications Systems Directorate in El Segundo, CA manages the contract (F04701-02-C-0002, PO 0519).

June 14/11: Layoffs. Layoffs at Lockheed Martin Space Systems. This branch of the firm employs around 16,000 employees in 12 states, but intends to shed 1,200 employees by year-end, including a 25% cut in middle management to reduce impacts elsewhere. LMSS’ Sunnyvale, CA; Pennsylvania; and Denver, CO sites will be hardest hit, and the firm’s release says that it’s pushed in part by several of their major programs moving beyond the labor-intensive development phase.

Space Systems says it will offer “eligible” salaried employees an opportunity for a voluntary layoff, plus career transition support for all affected employees. Lockheed Martin.

Layoffs

June 13/11: Studies. Lockheed Martin Space Systems in Sunnyvale, CA receives a $17.7 million cost-plus-award-fee contract modification, extending AEHF’s capabilities insertion study. As Lockheed Martin’s engineers contemplate ways to improve future AEHF satellites and meet growing military bandwidth needs, they will be performing capability/requirements tradeoffs for systems, technology assessments, development of design alternatives, risk assessments, and cost and schedule analysis (F04701-02-C-0002, PO 0500).

May 9/11: Changes. Lockheed Martin Corp. in Sunnyvale, CA receives a $21.3 million cost-plus-award-fee contract modification to develop AEHF program software changes in 3 areas. Absent further specifics, the award has been placed in this section.

Work will be performed in Sunnyvale, CA, and King of Prussia, PA. At this point, $19 million has been committed by the USAF Space and Missiles Center, SMC/PKJ in El Segundo, CA (F04701-02-C-0002, P00483).

April 15/11: The Pentagon’s Selected Acquisitions Report ending Dec 30/10 includes the “significant cost changes” in AEHF program – both satellites and terminals. The satellite section reads:

“Program costs increased $1,065.1 million (+8.6 percent) from $12,448.9 million to $13,514.0 million, due primarily to a revised procurement estimate to fully fund the fifth and sixth satellites (+$1,620.7 million) and an extension of interim contract support due to the launch delay for the first satellite (+214.5 million). These increases are partially offset by an estimating decrease due to an acquisition strategy change from full funding to a block buy for the fifth and sixth satellites (-$798.5 million).”

SAR – cost increases

April 7/11: AEHF-1. The USAF’s Space and Missile systems Center provides an update on AEHF-1 progress, as they work to move it into an operational orbit after it fell short upon launch. Today, AEHF-1 crosses the 20,000 km/ 12,427 mile perigee mark.

SMC says orbit-raising is successfully continuing as planned. Phases 1 & 2 using hydrazine thruster phase are complete, and the satellite is now using its AEHF’s Hall Current Thruster electric propulsion system. The goal is to reach geosynchronous orbit in late summer 2011. If they do, it would cap as remarkable effort, and a very nice recovery for the joint government and contractor team. On the other hand, fuel reserves are the #1 determinant of how long a geosynchronous satellite can remain effective, and AEHF-1′s fuel reserves will be much lower than planned. See also Nov 16/10 entry for more details. USAF SMC (no URL).

March 22/11: AEHF-1. AEHF-1 crosses the half-way mark to geosynchronous orbit, with its perigee climbing above 17,893 km/ 11,174 miles altitude. USAF SMC (no URL).

Dec 15/10: SV-4. Lockheed Martin Space Systems Co. in Sunnyvale, CA received a $1.31 billion contract modification for SV4, the 4th AEHF satellite, SV4 unique systems engineering, a system level factory test, system database management functions, systems level support equipment, and program management. At this time, $1.236 billion has been obligated (FO4701-02-C-0002; PO0448).

See also Sept 10/09 and July 18/06 entries, which raise total SV-4 contracts to $1.604 billion. USAF release.

SV-4 main contract

Dec 14/10: AEHF-1. In response to questions about AEHF-1′s orbital problems, the USAF Space and Missile Systems Center says they’ve briefed senior Air Force leaders, who are considering initiating a Safety Investigation Board. They will also present their investigation briefing to selected Congressional Staff Members later in December 2010. Based on the current costs for AEHF-1/2/3, the unit cost per satellite is about $1.7 billion, and the USAF is reviewing its options concerning contractor financial responsibility and/or penalties.

Under current plans, AEHF-1 is looking at a 9-month delay, reaching its test/check-out orbit on Aug 11/11, instead of Nov 10/10.

Nov 16/10: AEHF-1 may have launched successfully, but a propulsion system problem prevented a series of 3 liquid apogee engine burns, so it didn’t reach its operational mission orbit. Los Angeles AFB discusses the new plan to fix this, which involves 4 major stages:

The 1st Parking Burns stage used 3 of the 6 reaction engine assemblies, or REAs, to quickly raise the perigee altitude to reduce drag and attitude disturbances. The 5 pound thrusters brought the orbit to a perigee altitude of 1,156 km and an inclination of 19.9 degrees on Sept 7/10. Apogee altitude remained at 50,000 km, per plan.

The 2nd stage was a series of 6 REA Apogee Burns, to more efficiently raise the perigee path to 4,712 km, and lower inclination to 15 degrees. It was completed on Sept 22/10.

The 3rd stage involves firing 2 high-efficiency hall current thrusters (HCTs), for as long as 12 hours around the apogee altitude. These burns will continue every orbit, centered on apogee, and this stage is planned to last between 7-9 months. It began on Oct 20/10, with a 9 hour burn during AEHF-1′s 100th apogee. Meanwhile, the satellite has managed to deploy its solar arrays, and pass operational readiness checkouts.

The 4th and final stage will require a near-continuous firing of the HCTs to adjust to the final mission orbit, lasting about 3 months. Los Angeles AFB.

AEHF-1: We have a problem

Nov 9/10: Support Lockheed Martin Space Systems Co. in Sunnyvale, CA received a $49 million contract modification for AEHF sustainment engineering support from Oct 1/10 to Sept 30/11. At this point, $9 million has been committed by the AFSMC/MCSQ in El Segundo, CA (F04701-02-C-002; P00427).

Oct 28/10: Testing. Lockheed Martin announces the end of Intersegment System Testing (IST) for the 2nd AEHF satellite in Sunnyvale, CA, completing pre-launch verification for the new eXtended Data Rate (XDR) high-bandwidth service. XDR offers a 10-fold increase in system capacity, coverage and network connectivity, allowing applications such as real-time video, and voice and data conferencing. Completion of IST for AEHF-2 caps an extensive suite of interoperability tests with new XDR-capable user terminals, which demonstrating protected anti-jam communications at data rates up to 8 Mbps using agile satellite spot beams.

The 2nd AEHF satellite has completed all testing, and will be placed in storage in November 2010. The 3rd AEHF satellite is currently progressing through thermal vacuum environmental testing at the Lockheed Martin facility in Sunnyvale, CA.

Satellites FY 2010

AEHF-1

AEHF-1 highlights
(click for video)

Aug 16/10: Studies Lockheed Martin Space Systems Co. in Sunnyvale, CA received a $16 million contract to study AEHF enhancement options, and all funds have already been committed. With the demise of AEHF’s T-SAT successor, AEHF enhancements become a critical opportunity for the bandwidth-constrained US military (F04701-02-C-0002, P00443).

Aug 14/10: SV-1. The USAF’s 45th Space Wing launches AEHF-1 from Pad 41 in Cape Canaveral, FL, on board a United Launch Alliance Atlas V rocket. USAF | Dutch MvD | ULA | Lockheed Martin | Florida Today, incl. video | Spaceflight Now.

AEHF-1 launch

August 10/10: SV-1. AEHF-1 is encapsulated into the Atlas V rocket. The launch has been delayed again, until Aug 14/10.

July 16/10: SV-1. Los Angeles AFB announces that, the Lockheed-Martin/Air Force AEHF team has continued a long-standing tradition, and signed a piece of the flight thermal blanket for the AEHF-1 satellite in preparation for launch. The satellite was shipped on May 24/10, and is currently at Cape Canaveral Air Force Station, FL being readied for launch.

July 14/10: SV-1 launch slips. The USAF announces that:

“The Atlas V launch of the first Advanced Extremely High Frequency satellite from SLC-41 at the cape has been delayed 10 days from 30 July to 10 August. This delay was necessary to provide engineers more time to perform confidence testing on a launch vehicle component associated with releasing the fairing support structure. Processing on both the launch vehicle and satellite continues nominally to a new launch date of 10 August. This slip in the AEHF-1 launch is not expected to impact other launches in the manifest.”

See USAF | Lockheed Martin | United Launch Alliance | Florida Today, incl. video | Spaceflight Now.

May 25/10: SV-1. Lockheed Martin delivers the 1st new AEHF secure broadband communications satellite (SV-1) to the USAF, for a planned July 30/10 liftoff.

As of this date, Lockheed martin says that SV-2 has completed Final Integrated System Test, and is now preparing for Intersegment testing. SV-3 has now completed acoustic testing. Lockheed Martin.

AEHF-1 delivered.

April 14/10: Testing. Lockheed Martin announces that it has completed all factory testing of the first AEHF satellite, which means it’s ready for delivery to Cape Canaveral Air Force Station, FL for a September 2010 liftoff aboard an Atlas V rocket.

The 2nd AEHF satellite (SV-2) is in the midst of its final performance test known as Final Integrated System Test which will verify all spacecraft interfaces, demonstrate full functionality and evaluate satellite performance. The 3rd AEHF satellite, SV-3, is gearing up for acoustic testing.

April 1/10: The Pentagon releases its April 2010 Selected Acquisitions Report, covering major program changes up to December 2009. AEHF makes the list, owing to procurement shifts in the wake of TSAT’s cancellation:

“Program costs increased $2,510.3 million (+25.3%) from $9,938.6 million to $12,448.9 million, due primarily to a quantity increase of two satellites from four to six satellites (+$2,623.7 million). This increase was partially offset by decreases due to an adjustment to the cost estimate (-$20.0 million), Congressional general reductions (-$19.2 million), a contractor to civilian personnel conversion (-$11.8 million), and the application of revised escalation indices (-$53.9 million).”

SAR – to 6 satellites

March 30/10: GAO Report. The US GAO audit office delivers its 8th annual “Defense Acquisitions: Assessments of Selected Weapon Programs report. With respect to the AEHF, it’s a bit behind the curve in listing only 4 satellites in the program for its figures, but it does acknowledge them in its commentary. Excerpts include:

“The AEHF program has overcome the technical problems that have delayed the first satellite’s launch by almost 2 years and increased the cost of the program. Defective satellite parts were replaced and the satellite successfully completed system-level environmental testing… Three satellites have been added to the program in recent years… The cost of the fourth satellite is significantly more than the estimated $952 million (then-year dollars) cost of the third satellite because there is an estimated 4-year break in production and some electronics components are no longer manufactured. Program officials do not anticipate significant technical challenges, but integrating, testing, and requalifying the new components will require time and money… design specifications for the first three satellites will remain unchanged for satellites four through six, which will be clones except for obsolete parts. The program office estimates the cost of satellites five and six will be about $1.6 billion and $1.7 billion (then-year dollars), respectively, with estimated launch dates in 2018 and 2020.”

Oct 7/09: Studies. Lockheed Martin Space Systems in Sunnyvale, CA received a $21.6 million contract for AEHF satellites that will perform a 50% design adequacy assessment for the mission control segment and continue preparation for the preliminary design review as well as study the impacts on strategic command requirements. At this time, $4 million has been obligated (F04701-02-C-0002, P00383).

Satellites FY 2009

Beyond TSAT.

Sept 17/09: No TSAT. What Now? During a media roundtable with USAF Space Command’s Space and Missile Systems Center Commander, Lt. Gen. Tom Sheridan, he explains the way forward in the absence of TSAT. AEHF-4 and WGS F5/F6 have been added, but that will not make up the gap in space-based bandwidth. Meanwhile, the need for high bandwidth anywhere is exploding, thanks to the skyrocketing number of UAVs and other surveillance and/or remotely-operated platforms.

Efforts are now underway to look at the overall gap created by TSAT’s removal, determine the military’s overall priorities among military wideband (WGS), hardened (AEHF), or other bandwidth options, and figure out how that gap might be covered a piece at a time. New solutions will be an option, and so will the possibility of adding new technologies to existing platforms like AEHF.

If this doesn’t sound like a firm plan, it’s because there isn’t one yet. The current foci involve figuring out customer priorities, and finding near-term funding that would retain a number of TSAT personnel and engineers. Success in retaining these people is expected to ensure that they can bring their experience with next-generation technologies to help generate new options, and then analyze alternatives.

TSAT dead – long live AEHF!

Sept 14/09: Training. Lockheed Martin Corp. in Sunnyvale, CA received a $6.1 million contract to develop training material for increment 7, train the trainer for subject matter experts at Fort Gordon, and train international partners for the Advanced Extremely High Frequency Satellite program. At this time, $324,048 has been committed by the SMC/PKA in El Segundo, CA (F04701-02-C0002, P00353).

Sept 10/09: SV-4. Lockheed Martin Space Systems Company receives a $22 million contract for advance procurement of long-lead parts for AEHF Satellite Vehicle 4. At this time, $11 million has been committed (F04701-02-C-0002, P00379).

Sept 10/09: SV-1. Lockheed Martin announces that AEHF-1 has entered final testing at the company’s Sunnyvale, CA facilities, following successful completion of all spacecraft environmental testing. The Lockheed Martin-led team is now executing the final integrated spacecraft and system test procedures necessary to prepare the vehicle for flight. Over a 75-day period, the satellite will go through a series of factory tests to verify all spacecraft interfaces, demonstrate full functionality and evaluate satellite performance.

AEHF-1 was originally scheduled for launch in 2007, but the current release sets the bar for delivery at early 2010, and launch at an unspecified time in 2010. The 2nd and 3rd AEHF satellites are also progressing through final integration and test activities, and are currently on track for launch in 2011 and 2012 respectively.

March 31/09: GAO Report. American GAO auditors look at the AEHF program, as part of their 7th annual “Defense Acquisitions: Assessments of Selected Weapon Programs” report:

“For the second straight year, technical problems with satellite components resulted in a delay of the first launch. This latest delay is almost 2 years. Further, the program office estimates that the fourth AEHF satellite could cost more than twice the third satellite because some components that are no longer manufactured will have to be replaced and production will have to be restarted after a 4-year gap…

During system-level environmental testing of the first satellite, the program office identified six components with workmanship or design problems. Five of these components will need to be removed from the spacecraft for repair, and one will need a software fix. Once all components are repaired and reinstalled, the spacecraft will undergo environmental testing a second time to assure all components are working properly. Continued problems with integration and testing have led to additional schedule delays. The launch of the first satellite has slipped almost two years – from November 2008 to as late as September 2010. The launch of the second satellite was delayed from August 2009 to around June 2011, and the third satellite is now planned for launch in 2012. Due to these delays, initial operational capability has slipped 3 years – from 2010 to 2013.”

Feb 27/09: SV-4 lead-in. Lockheed Martin Space Systems in Sunnyvale, CA receives for $175 million for “the congressionally mandated advance procurement of long-lead parts in FY08 and FY09 for the Advanced Extremely High Frequency Satellite Vehicle four.” At this time $104.5 million has been committed (F04701-02-C-0002, POO347).

See also the $119.2 million July 18/06 contract. Each contract may not spend its full amount, but issued contracts to date now total $294.2 million.

Feb 27/09: Sub-contractors. Northrop Grumman delivers the payload module for AEHF-3. They are 22 days early, marking 3 consecutive early deliveries to the Lockheed Martin’s Sunnyvale, CA facilities (2007, 2008, 2009). Their payload module consists of the complete set of processing, routing and control hardware and software that handle the satellite’s communications, including critical features that protect against interception or jamming.

Lockheed Martin now will begin mating the payload module with its A2100 satellite bus and other space vehicle components, to be followed by environmental and acceptance testing of the completed satellite. NGC release.

Dec 30/08: TVAC issues. Lockheed Martin Space Systems in Sunnyvale, CA received a $7.2 million modifications, authorizing Lockheed to perform 2 additional thermal vacuum (TVAC) cycles on the AEHF Space Vehicles 2. As the Dec 16/08 entry notes, AEHF-1 is already facing problems due to TVAC related anomalies.

The US Air Force Space and Missile Systems Center (SMC), Military Satellite Communications Systems Wing at El Segundo, CA manages this contract (F04701-02-C-002, P00343).

Dec 30/08: Studies. Lockheed Martin Space Systems in Sunnyvale, CA received a $9.9 million modification to provide feasibility studies. These studies will center on extending the AEHF system in the Military Satellite Communications Program, which appears to bode ill for the $20+ billion TSAT program that was supposed to surpass AEHF. At this time, all funds have been obligated.

The US Air Force Space and Missile Systems Center (SMC), Military Satellite Communications Systems Wing at El Segundo, CA manages this contract (F04701-02-C-002, P00340).

Dec 16/08: TVAC issues. Lockheed Martin Space Systems Co. in Sunnyvale, CA receives a $252 million Change Order that will implement additional vehicle-level Thermal Vacuum (TVAC) testing for AEHF-1. The DefenseLINK release adds that:

“The first Advanced Extremely High Frequency (AEHF) satellite is undergoing a significant amount of rework on mission critical unit’s dues [sic] to anomalies.”

At this stage, anomalies are very bad news. Additional TVAC testing suggests that the problem affects the satellite’s ability to survive and operate in the vacuum and wildly varying temperatures that a space satellite must endure.

Testing fail forces contract

Nov 17/08: The latest Pentagon Selected Acquisitions Report finds the AEHF program on the announcements list again:

“Program costs increases $2,576.6 million from $5,645.3 million to $9,938.6 million (+35.0%) to reflect cost increases which have resulted in a critical Nunn-McCurdy unit cost breach currently undergoing certification review.”

This is slightly confusing, as the April 2008 announcement set costs at $7.36 billion – rising from $6.42 billion because they had added a 4th AEHF satellite to the program.

SAR – major cost breach

Satellites FY 2008

Cost increases.

Antenna test
(click to view full)

Sept 16/08: Sub-contractors. Northrop Grumman Corporation announces that they have integrated all electronic units for AEHF-3′s payload module. The equipment includes approximately 20 electronics units that offer a complete set of radio frequency, processing, routing and control hardware, plus approximately 500,000 lines of software code.

NGC is currently under contract to provide 3 communications payloads to AEHF prime contractor Lockheed Martin in Sunnyvale, CA, and has delivered the first 2 on or ahead of schedule. This integration with Lockheed Martin’s A2100 satellite bus leaves the firm on track to maintain that record.

July 18/06: SV-4 lead-in. A $119.2 million modification to a cost plus award fee, cost-plus fixed-fee, cost-plus incentive-fee, firm-fixed-price contract with Lockheed Martin Space Systems Corp. of Sunnyvale, CA (F04701-02-C-0002, P00315). The modification covers long-lead parts for the 4th AEHF Satellite, and is an unfinalized contract whose exact numbers will be adjusted later. At this time $59.6 million has been committed.

April 7/08: Cost increases for the AEHF satellite and FAB-T terminal programs land them both on the Pentagon’s latest Selected Acquisition Reports release. The total increase is about 14.5% for the program as a whole, but the biggest increase is easy to understand – they added a satellite:

“[AEHF] Program costs increased $940.5 million (+14.6 percent) from $6,421.5 million to $7,362.0 million, due primarily to a quantity increase of one satellite from three to four satellites (+$946.0 million). Congress appropriated advance procurement for Space Vehicle 4 (SV-4) in the fiscal 2008 Appropriations Act. The Department added SV-4 Full Procurement in fiscal 2010, with a launch capability targeted in fiscal 2014.”

SAR – to 4 satellites

Feb 28/08: Testing. Lockheed Martin announces successful acoustic testing of the first Advanced Extremely High Frequency (AEHF) military communications satellite at its Space Systems facilities in Sunnyvale, CA. This test is designed to duplicate the sound and vibration levels expected during launch into orbit.

Lockheed Martin Space Systems and payload supplier Northrop Grumman Space Technology can now proceed with thermal vacuum testing, which tests performance in the enormously wide temperature extremes found in space. AEHF-1 will be shipped to the Air Force in late 2008 in preparation for launch aboard an Atlas V launch vehicle.

Satellites FY 2007

AEHF-1 meets EEVL.

P&P integration
(click to view full)

June 18/07: Lockheed Martin announces that it has successfully integrated the AEHF’s spacecraft propulsion core structure and the payload module. The core structure contains the integrated propulsion system as well as panels and other components that serve as the structural foundation of the satellite. The payload module consists of spacecraft electronics as well as the complete set of payload processing, routing and control hardware and software that perform the satellite’s communications function.

The successful integration allows the team of Lockheed Martin Space Systems in Sunnyvale, CA and payload supplier Northrop Grumman Space Technology in Redondo Beach, CA to begin system level environmental and acceptance testing in preparation for launch in mid-2008. Lockheed Martin release.

June 1/07: Sub-contractors. Raytheon Co in Marlborough, MA received a $27.1 million3 firm-fixed-price contract for production, test, and delivery of 9 Extremely High Frequency (EHF) Satellite Communications Follow-On Terminal Communication Groups P/N: G752718-2 and 17 ship Antenna Groups P/N: G674898-1 (seven Radar Reducing Cross Section and ten Non-RRCS variants). This contract includes an option which, if exercised, would bring the cumulative value of this contract to $38.3 million.

Work will be performed in Largo, FL (61.8%); Marlborough, MA (36.8%); and Saint Pete, FL (1.4%), and is expected to be complete by May 2009. This contract was not competitively procured; it was synopsized as a sole source procurement via the Space and Naval Warfare Systems Command E-commerce web site on July 5, 2006. The Space and Naval Warfare Systems Command, San Diego, CA issued the contract (N00039-07-C-0001).

Feb 28/07: Lockheed Martin Corp. in Littleton, CO received a $108 million firm-fixed-price contract to launch AEHF-1 using an Atlas V Launch Vehicle under the Evolved Expendable Launch Vehicle (EELV) program. At this time, total funds have been obligated and work will be complete February 2009. The Headquarters Space and Missile Systems Center at Los Angeles Air Force Base, CA issued the contract (FA8816-06-C0004).

AEHF-1 launch contract

Dec 28/06: SV-1. Lockheed Martin Corp. Space Systems in Sunnyvale, CA received a $7.8 million cost-plus-award-fee contract modification for the use of a commercial payload processing facility to test, integrate, and fuel the Advanced Extremely High Frequency satellite in preparation for launch. This modification replaces the use of a government facility with a commercial facility that meets program requirements for floor space sufficient to support simultaneous mechanical and electrical launch processing operations. At this time, $1 million has been obligated. The Headquarters Military Satellite Communications Systems Wing at Los Angeles Air Force Base, CA issued the contract (F04701-02-C-0002/P00214).

Dec 22/06: SV-3. Lockheed Martin announces that it has delivered the flight structure for the 3rd AEHF satellite ahead of schedule. The flight structure, which is based on the A2100 geosynchronous spacecraft, will now be sent to Lockheed’s Mississippi facility for integration with its propulsion subsystem.

Over the next several months, a team of engineers and technicians at Lockheed Martin’s Mississippi Space & Technology Center, an advanced propulsion, thermal, and metrology facility located at the John C. Stennis Space Center, will integrate the spacecraft’s propulsion subsystem, which is essential for maneuvering the satellite during transfer

Show more