2014-10-12



Old school:
MH-53E & Mk-105 sled
(click to view full)

The US Navy currently uses large CH-53/MH-53 helicopters and towed sleds to help with mine clearance work, but they hope to replace those old systems with something smaller and newer. The MH-60S helicopter’s Airborne Mine Counter-Measures (AMCM) system adds an operator’s station to the helicopter cabin, additional internal fuel stores, and towing capability, accompanied by a suite of carried systems that can be mixed and matched. AMCM is actually 5 different air, surface and sub-surface mine countermeasures systems, all deployed and integrated together in the helicopter.

While the US Navy develops AMCM, and complementary ship-launched systems for use on the new Littoral Combat Ships, new minehunter ship classes like the Ospreys are being retired by the US Navy and sold. All in an era where the threat of mines is arguably rising, along with tensions around key chokepoints like the Suez Canal and Strait of Hormuz.

This article explains the components involved (AQS-20, ALMDS, AMNS, OASIS, RAMICS; COBRA, RMS, SMCM), chronicles their progress through reports and contracts, and provides additional links for research.

Airborne Mine Counter-Measures (AMCM): The Set



Original AMCM
(click to view full)

The surviving AMCM set includes:

AN/AQS-20 mine hunting sonar (not MH-60S capable, Inc 1#). The AN/AQS-20A uses sonar and electro-optical sensors to provide high-resolution images of mine-like objects and high-precision location information, and can operate in shallow or deep waters. The system is towed under water to scan the water in front and to the sides of the sonar, as well as the sea bottom. This task is especially important in littoral and shallow-water zones, including critical global trade chokepoints like the Straits of Malacca, the Persian Gulf and Straits of Hormuz, the Suez Canal and Panama Canal regions, etc. The AQS-20 have been in service since the 1990s, and the Navy program goal is 94 units, up from the 30 it possessed at the end of 2012.



MCM 2013
(click to view full)

The AN/AQS-20’s modular design is being produced under spiral development, which means a continuous series of improvements are being applied and tested. The use of commercial off the shelf (COTS) components alongside proprietary technologies makes this process easier, and will improve the future upgrade process as electronics continue to advance. They’ll need to improve, because false positives in 2 of 3 search modes and estimating mine depth have been an issue for the system, and ALMDS’ depth limitations mean that they need more coverage from the AQS-20. Until they do improve, the tactical response of re-querying contacts means that searches will take about 2x as long.

The sonar’s biggest problem is simple, and was eminently testable and foreseeable: the MH-60S AMCM helicopter doesn’t have enough power to tow it. Almost 8 years after development began, therefore, the AQS-20 is left dependent on the much slower WLD-1 RMMV snorkeling USV. Unfortunately, the RMMV isn’t scheduled to iron out its issues until 2015, and full-rate RMMV production won’t happen until 2017.

Laser mine finder
(click to view full)

Airborne Laser Mine Detection System (AES-1 ALMDS, Inc 1). In his position as U.S. Navy Program Executive Officer for littoral and mine warfare, Rear Admiral William E. Landay said in 2005 that ALMDS “represents the first new technology to be applied to mine [hunting] since the advent of sonar.”

ALMDS is a Light Detection and Ranging (LIDAR) Airborne Mine Countermeasures high area coverage system that detects, classifieds, and localizes floating and near-surface moored sea mines, using a fan-shaped pulsed wide 538-nanometer blue-green laser pattern that samples at rates over 100 per second. As the helicopter’s motion “pushes” the LIDAR fan forward, 4 cameras are arranged to cover the same illuminated swath. An automatic target recognition algorithm picks out potential mine-like objects, and stores their images for classification by shipboard Fleet operators, using computer-aided post-mission analysis tools.

This LIDAR approach gets around the inherent flight and drag limitations of towing bulky gear in the water, which allows faster area search. It also lets a helicopter image an entire ocean area and move on, without stopping to recover equipment. ALMDS’ laser light and streak tube receivers are housed in an external equipment pod, which is mechanically attached to the MH-60S with a standard BRU-14 bomb rack mount. Electrical connections use a primary and auxiliary umbilical cable to the MH-60S AMCM’s common operator console. Data is stored on a mass memory unit for post mission analysis.

The ALMDS program is managed by the US Navy’s PMS-495: the Program Executive Office, Littoral and Mine Warfare, Mine Warfare Program Office. The ALMDS industrial team includes Northrop Grumman Corporation at its Melbourne, FL site, and key suppliers:

NGC subsidiary Cutting Edge Optronics (CEO) in St. Charles, MO (high-powered laser transmitter)

Arete Associates in Tucson, AZ (Receiver Sensor Assembly)

CPI Aero in Edgewood, NY (pod housing)

Curtiss Wright/DY4 in San Diego, CA (central electronics chassis)

Meggitt Defense Systems, Inc. in Irvine, CA (environmental control system).

As recently as 2013, ALMDS was cited by the US GAO as not yet meeting system performance requirements, with problems that have included misinterpreting light flashes on the water’s surface for mines, and depth limitations that are shallower than specifications required. The whole issue of light refraction through a variably-shaped surface isn’t exactly easy, but the system has to work. Northrop Grumman cites improvements, which has prompted the US Navy to resume buys, and prompted Japan to place a 2012 export order, but GAO continues to cite performance that’s below specifications. Both sides are right; meanwhile, the US Navy is adopting a multi-pass search method that will take more time to cover a given area.

Airborne Mine Neutralization System (ASQ-235 AMNS, Inc 1). Based on BAE Systems’ Archerfish. It’s a small towed vehicle that acquires mines via sonar, then fires a shaped charge into them. Each AMNS system has 4 of them. It’s especially useful for bottom, close-tethered and in-volume sea mines, and the towed vehicle is designed to be expendable. It’s good for disposing of found mines at a safe distance, but it’s one by one targeting rather than area minesweeping.

AMNS biggest challenge is the handling system, which doesn’t have enough clearance under the launch and retrieval system. They need to fix that, soon. Its other challenge involves successfully targeting mines in currents, which is an admittedly difficult computation but a very big operational problem. If it can overcome these challenges, an unfunded future update will need to give AMNS near-surface capabilities, in order to replace the canceled RAMICS 30mm supercavitating gun.

AMCM Companions

LCS trimaran & MH-60S
(click to view full)

These combined AMCM systems will offer more speed and agility in addressing a mine threat, and will be carried by US vessels including the new Littoral Combat Ships. In addition, fitting all 5 AMCM systems into a roll-on/roll-off mission kit for the MH-60S requires a couple of other elements:

The MH-60S Common Console The Common Console is common to all five AMCM systems as well as the other MH-60S missions and provides for control, monitor and display of the AMCM system. It has a single large display that shows multiple views for each sensor, and a smaller navigation display that matches the cockpit’s.

The MH-60S Carriage, Stream, Tow and Recovery System (CSTRS). Does what the title says. Has to be robust, in order to support a number of different systems. Goals included reducing crew size from 5 to 2, and allowing hands-off operation. Needs changes, because there isn’t enough clearance for the AQS-20.

Tactical Common Data Link (TCDL). TCDL will provide a high-bandwidth, near-real time sensor data link with the ability to relay data to the mine warfare commander.

These combined systems are critical components of the new Littoral Combat Ship’s mine warfare mission module. The new ships will operate MH-60S helicopters, and can take on an MH-60S AMCM helicopter as part of the MIW mine warfare mission module. The AQS-20 sonar can also be attached to the AN/WLD-1 semi-submersible autonomous vehicle, which comes as part of the LCS ship’s swappable mission packages and has been installed in some DDG-51 destroyers as well.

Note that even though these mission packages are designed to work with Freedom or Independence class Littoral Combat Ships, AMCM’s components could be freely deployed on other ships, along with their carrying helicopter.

Some of the Littoral Combat Ship’s MCM systems will be paired with other platforms beyond the MH-60S. Adding a USV/UUV option helps provide more comprehensive shallow water coverage alongside AMCM, and puts deep water coverage within reach, without requiring purpose-built minesweeper ships, or placing large and expensive ships at risk.

Ship-Based Systems

RMMV
(click to view full)

Remote Minehunting System: (RMS, Inc 1) Lockheed Martin’s AN/WLD-1 (RMMV) snorkeling USV was set to tow the AN/AQS-20 behind, while also using its own maneuvering power and sensors, in order to scan in front and to the sides for anti-shipping mines and submarines. It could also carry “kill vehicles” for found mines.

The RMS RMMV and related systems include the WLD-1 Remote Multi-Mission Vehicle (RMMV), the RMMV Data Recorder (RDR), the Remote Minehunting Functional Segment (RMFS), its Shipboard Stowage Equipment (SSE), its Shipboard Handling Equipment (SHE), the Remote Operator Pack (ROP), and ancillary support equipment. RMS RMMV and related systems interfaces include the LCS radio system, the Multi-Vehicle Communication System (MVCS), the Mission Package Computing Environment (MPCE), the AN/AQS-20, the LCS Launch Recovery and Handling System (LR&HS), and the MHU-191 Dolly.

Unfortunately, a March 31/10 GAO report cited the RMMV snorkeling USV’s failure to meet performance requirements, and the RMS had its planned buy cut in December 2009. It would deploy only aboard Littoral Combat Ship classes, and only within the mine counter-measures module. Reliability and performance issues were the next problem to surface. By December 2011, the 1st of 3 reliability improvement phases had ended, and funding was in place to continue the RMMV RGP into 2013. They were only at 60% of their goal by the end of 2012, and DOT&E has been scathing in their criticism of a lenient testing methodology, but the Navy plans to field it with Increment 1 anyway in 2014.

MQ-8B with COBRA
(click to view full)

Coastal Battlefield Reconnaissance and Analysis System (COBRA AN/DVS-1, Inc 2 & 4): This system scans beaches for buried mines. Its goal is actually broader than mine detection, and involves “accurate battlefield intelligence depicting tactical objectives, minefields, obstacles and fortifications on the beach and inland areas.” The prototype system uses a fast-scanning LIDAR laser, 3D imaging camera, and target recognition algorithms.

COBRA Block I introduces the system with daytime detection of surface laid minefields and obstacles in the beach zone, including partial capability in the surf zone. It’s slated for deployment as part of MIW Increment 2 in 2015.

COBRA Block II adds full surf zone detection, plus night detection of mines and obstacle detection. It’s slated for deployment as part of MIW Increment 4 in 2019 or so.

A COBRA Block III has been mentioned with buried mine detection capability, and on-board Near-Real-Time processing of Multi Spectral Imagery data, but it has no scheduled deployment date.

As of 2012, COBRA is still slated for deployment on board MQ-8B Fire Scout unmanned helicopters, but production stopped at barely over 20, and it remains to be seen whether that small platform will be adequate. A larger MQ-8C has been ordered based on the full-size Bell 407 helicopter, and the COBRA system could also be added to manned helicopters in the Navy’s fleet.

UISS: CUSV
(click to view full)

Unmanned Surface Vehicle with Unmanned Surface Sweep System (USV/UISS, Inc 3). This will be a micro-turbine-powered magnetic towed cable and acoustical signal generator, towed from a Textron CUSV unmanned surface craft with full NATO STANAG 4568 and US JAUS compatibility, using the Harris SeaLancet datalink and AAI’s command-and-control system for UAVs and USVs. It will be the MCM module’s 1st area minesweeping capability, detonating magnetic and acoustic mines in its area.

Contact mines will need to be destroyed one by one using AMNS, or by older systems like the MH-53 Sea Dragon heavy helicopters and their towed sleds. USV-UISS replaces the canceled heli-towed OASIS system, and is scheduled for fielding in 2017.

Note that due to weight and space limitations, LCS will not be able to carry both the UISS USV system and the SMCM UUV.

Bluefin 21 UUV

Surface Mine Countermeasure Unmanned Underwater Vehicle (SMCM UUV, Inc 4): The SMCM UUV system is designed to reliably detect and identify undersea volume and bottom mines in shallow, high-clutter environments, especially areas with the potential for mine case burial. It will also gather environmental data for use by other MIW systems. This is similar to the idea behind the RMS, but the Knifefish is expected to enter service later, in 2019.

The SMCM system will use Bluefin-21 “Knifefish” UUVs, which were developed with US Navy funding and envisioned from the outset as having a role on LCS. The 16.5 foot, 21″ diameter, 1,650 pound (5.02m/ 53.4cm/ 748.5kg) Bluefin-21 has a maximum depth of 4500m, with 25-hour endurance, and inertial navigation systems for precision positioning. It features MIT-spinoff Bluefin Robotics’ modular and flexible vehicle architecture, pressure-tolerant field-swappable subsea batteries, and low-noise propulsion technology. For this role, it will carry an advanced sonar payload developed by SMCM lead contractor General Dynamics Advanced Information Systems. Each SMCM system will include 2 Bluefin-21s with payloads, launch and recovery equipment, a support container, spare parts, and support equipment.

General Dynamics AIS leads the SMCM team, which includes UUV maker Bluefin Robotics in Quincy, MA; Ultra Electronic Ocean Systems in Braintree, MA; Oceaneering International, Inc. in Houston, TX; Metron in Reston, VA; Applied Research Laboratory at Penn State University, PA; 3 Phoenix in Hanover, MD and ASRC Research Technology Solutions in Greenbelt, MD.

Other

These would help, too…
(click to view full)

As of 2014, the Pentagon’s Department of Operational Testing and Evaluation concluded that:

“Even if this MCM package meets all of its final increment requirements, legacy systems will be needed to perform the full range of mine clearance operations.”

Exactly what this means remains unclear, as it will be up to the Navy to determine. Some steps are already being taken, using legacy ships.

For surface scanning, an experiment by Northrop Grumman has towed their current AQS-24A sonar behind their MHU 11m RHIB USV (q.v. Oct 6/14 entry). The Mk.105 sleds towed by MH-53 helicopters would certainly help address the MCM module’s current inability to kill shallow-water mines, and Independence Class ships could serve as “lily pads” while the helicopters remain serviceable.

Below the surface, new MK18 MOD 0 Swordfish (REMUS 100) and Mk18 MOD 2 Kingfish (REMUS 600) surveillance UUVs are already in use in SMCM type roles, using 11m RHIB boats for launch and recovery. Kill capability can come from Atlas Elektronik’s Seafox UUVs, which have been purchased to act in role that’s similar to the smaller AMNS. SeaFox add-ons can even provide the shallow-water capability that AMNS lacks.

The problems is that LCS has limited internal space and weight margins, compared to ships like the Navy’s new JHSVs. That forces mission package sizes which can only accommodate limited numbers of system sets, spares, repair parts, etc. Adding more partially-effective systems isn’t a viable solution, if it exceeds those limits as it’s likely to do. The Navy could restrict the MCM/MIW package to the much larger mission bays of the LCS 2 Independence Class, but the trimaran’s sharp weight limitations may defeat the point of having more space for equipment.

In retrospect, a platform like the JHSVs might have been far better suited to the counter-mine role. Or, the US Navy could also have kept its legacy MHC-51 Osprey Class minehunting ships in service, instead of selling them all before effective successor systems were developed. All at a time when mining global chokepoints like the Straits of Hormuz remains a top-3 strategic threat.

AMCM: Eliminated

OASIS concept
(click to view full)

Organic Airborne and Surface Influence Sweep (ALQ-220 OASIS, eliminated). Long, thin, 10 foot long towed “fish” that can mimic the acoustic or magnetic signatures of a variety of US ships. If there are mines in the area programmed to detonate on that basis, it should set them off. Good for doing fast minesweeping – if the helicopter can actually tow it.

OASIS is subdivided into 6 major components: the Towed Body, the Magnetic Influence Subsystem, the Acoustic Influence Subsystem, the Control/ Monitoring and Power Subsystem, the OASIS Software, and the Tow Cable/ Helicopter Interface. The towed body houses the magnetic and acoustic subsystems and mechanical assemblies. This in-water component is less than 930 pounds in weight, approximately 16 inches in diameter and 10 feet in length. Tension on the tow point is less than 6,000 pounds.

The system failed demonstration trials in 2008 due to excessive corrosion of its tow cable, linked to a nearby forward electrode that set up an unfortunate reaction in salt water. The electrode was repositioned on the towed body instead, but by then, the Navy “discovered” that the MH-60S helicopter didn’t have enough tow capacity to employ it. It was eliminated from AMCM in 2012, and will be replaced by a USV/UISS combination.

ALMDS & RAMICS
click for video

Rapid Airborne Mine Clearance System (RAMICS, eliminated). This weapon coupled a gated electro-optic Laser Imaging Detection and Ranging (LIDAR) sensor, and a 30mm MK44 Bushmaster II gun firing a MK 258 Mod 1 armor-piercing, fin-stabilized tracer round. When penetrating the water, the round “supercavitates” as the tip of the high velocity RAMICS projectile vaporizes the water to steam. Instead of the complete disintegration that usually happens to high-velocity rounds when they hit the water at mid-to-shallow angles, supercavitation lets the shell ride inside a bubble of gas, zipping through the water in a straight line at very high velocity.

The combination of sensors like ALMDS and a fast neutralizer like RAMICS would make shallow water mine clearing a pretty fast process, which is very useful when trying to perform tasks like re-opening a key port. Unfortunately, RAMICS didn’t test well. The Navy is cutting RAMICS entirely, and expanding AMNS’ role to destroy shallow mines as well.

Northrop Grumman’s RAMICS team included ATK (gun and ammunition), plus Kaman Aerospace Electro-Optics Development Center in Tucson, AZ; DRS Sensors and Targeting Systems in Cypress, CA; CPI Aerostructures in Edgewood, NY; and Meggitt Western Design in Irvine, CA.

Contracts & Key Events

FY 2014

Major AQS-20A contract; Multi-year ALMDS solicitation; ALMDS has depth limitations that will force some shifts; Ongoing RMS testing approach gets serious criticism from DOT&E; AMNS uncertainty is worrying; LCS can’t carry the entire MCM Increment 4 mission package.

RMS concept
(click to view full)

Oct 10/14: AMNS. Atlas North America LLC in VA Beach, VA receives an $8 million firm-fixed-priced, indefinite-delivery/ indefinite-quantity requirements contract for AN/ASQ-232 Airborne Mine Neutralization System (AMNS) depot level repair, maintenance, modifications, engineering services and spare parts. Funds will be committed as needed, and existing options could bring the contract to $43.3 million.

Work will be performed in Panama City Beach, FL (60%); Bahrain (25%); VA Beach, VA (10%); South Korea (2.5%); and Japan (2.5%); and is expected to be complete by October 2015. No funds will be obligated at the time of award. Contract funds will not expire at the end of the current fiscal year. Naval Surface Warfare Center Panama City Division, Panama City, FL, is the contracting activity (N61331-15-D-0002).

Oct 6/14: USV + sonar. Northrop Grumman Corporation works with the US Navy’s PMS-406 Unmanned Maritime Systems Program Office, the Naval Undersea Warfare Center (NUWC), and US Naval Forces Central Command in Manama, Bahrain to demonstrate a system that would tow its AMN/AQS-24A Mine Detecting Sensor System behind a USV, instead of a helicopter. It’s slower, but it’s also much less expensive, and can be used at night. These characteristics make it an interesting supplement to current methods, and the state of the MH-53E fleet (q.v. Sept 16/14) also makes it a good idea to have a Plan B.

NGC’s 11m Mine Hunting Unmanned Surface Vehicle (MHU) RHIB was used in tandem with the AQS-24A in the Arabian Gulf, executing a preplanned mission by motoring to an operational area, deploying the AQS-24A, executing a search pattern, and recovering the sensor. Real-time situational awareness data and sensor sonar data were sent via tactical data link to the command and control (C2) station. Sources: NGC, “Northrop Grumman Conducts Successful Demonstration of its AQS-24A Mine Detecting Sensor System for US Naval Forces Central Command”.

Sept 30/14: UISS. AAI Corp. in Hunt Valley, MD wins a $33.9 million cost-plus-incentive-fee contract for the purchase of the Unmanned Influence Sweep System to counter magnetic and acoustic mines. $4.75 million in FY 2014 US Navy RDT&E funds is committed immediately, and existing options could bring the contract’s cumulative value to $118.1 million.

The UISS prototype prototype performed well in tests during summer 2011, but the current system is actually the CUSV’s 4th generation. It includes improvements to the hull form, and a new propulsion system, less pitch and roll movement, and a larger payload bay that can accomodate 4 tested payloads: UISS mine neutralization, side-scan sonar, ISR, and nonlethal weapons. AAI already provides UAV control systems, and this system is similarly compliant with NATO STANAG 4586 and the USA’s Joint Architecture for Unmanned Systems (JAUS) standards. Textron now has 2 years to finalize UISS’ development before the planned 2017 test.

Work will be performed in Hunt Valley, Maryland (72%); Slidell, Louisiana (24%); Hauppauge, NY (2%); Columbia, MD (1%); and Lemont Furnace, PA (1%), and is expected to be complete by March 2017. This contract was competitively procured via FBO.gov, with 5 offers received by NAVSEA in Washington, DC (N00024-14-C-6322). See also Defense Update, “LCS to get unmanned mine-sweeping boats, drones” | USNI, “Textron Division Wins $34 Million Contract For LCS Unmanned Minesweeper”.

Textron for UISS USV

Sept 30/14: Support. SAIC in McLean, VA, receives a $12.2 million cost-plus-fixed fee contract for their Mine Warfare and Environmental Decision Aids Library (MEDAL), which is used by the PEO LCS’ Mine Warfare Program Office. The MEDAL system provides mine warfare situational awareness, mission planning/evaluation, and asset management software to support existing and emerging mine warfare missions, users, and systems. $3.6 million is committed immediately, using FY 2012 and 2014 budgets; exercised options could raise the cumulative value of this contract to $49.2 million.

Work will be performed in McLean, VA (80%); San Diego, CA (14%); Bay St. Louis, MS (5%); Edmond, OK (0.5%); and Norfolk, VA (0.5%), and is expected to be complete by September 2015. This contract was not competitively procured in accordance with FAR 6.302-1(a)(2) by NAVSEA in Washington, DC (N00024-14-C-6301).

Sept 26/14: MK18. Hydroid Inc. in Pocasset, MA, receives an $8.3 million modification to a previously awarded indefinite-delivery/indefinite-quantity contract for additional engineering services and technical expertise for the development, testing, and installation of pre-planned product improvements for the MK 18 Family of Systems Unmanned Underwater Vehicle. The smaller Mk.18 MOD1 Swordfish (REMUS 100) and larger Mk.18 MOD2 Kingfish (REMUS 600) are currently contractor-operated USV/UUVs, which use their on-board sonars to scan for mines or other navigation hazards. The US Navy intends to begin operating them in 2015.

Work will be performed in Pocasset, MA, and is expected to be complete by November 2018. Funding will not be obligated at time of award and will not expire at the end of the current fiscal year. The Naval Surface Warfare Center, Indian Head Explosive Ordnance Disposal Technology Division, Indian Head, MD manages the contract (N00174-14-D-0001).

Sept 16/14: MH-53Es. Internal U.S. Navy documents show that the US Navy is negotiating to acquire Japan’s retired fleet of MH-53E Sea Dragon heavy naval helicopters, harvesting them for parts in order to keep their own fleet flying until 2025. They might even need to fly some, as the US Navy has lost 3 MH-53Es over the last 18 months, cutting the fleet to 28 and forcing fleet-wide replacement of wiring bundles and fuel lines.

The MH-53E Sea Dragon fleet of heavy helicopters is used for mine-clearing from existing ships, using various equipment including the Mk.105 towed sled. The problem is that LCS MCM equipment delays and performance problems are forcing the Navy to keep them flying for a longer period of time. Meanwhile, spares are becoming a problem, because a lack of clear demand from the Navy caused many suppliers to cease production.

Japan sees mine clearing as a very important role, but they bought new MCH-101 variants of the AW101 to do it and retired the Sea Dragons. Remaining issues holding up the transfer reportedly include the need for high-level approval at the Pentagon, and the risk that Japan’s MH-53Es were exposed to radiological contamination in the wake of the Fukushima nuclear disaster. Sources: Virginia-Pilot, “Navy wants to harvest retired Japanese helos for parts”.

Aug 28/14: COBRA. Arete Associates in Tucson, AZ receive a $10.3 million contract modification for engineering services in support of the AN/DVS-1 Coastal Battlefield Reconnaissance and Analysis (COBRA) Block 1 program. $3.4 million is committed immediately from FY 2014 US Navy RDT&E budgets.

Work will be performed in Tucson, AZ and is expected to be complete by March 2017. The Naval Surface Warfare Center’s Panama City Division in Panama City, FL manages the contract (N61331-11-C-0007).

Aug 26-28/14: RMS. NAVSEA HQ issues an RFP for 18 WLD-1 RMMVs, plus related systems/subsystems, their Integrated Product Support Elements (IPSE), related system interfaces, and related ongoing support. Initial deliveries are expected within 30 months after contract award for base year orders, and within 24 months after award for the option years. FBO.gov, “Solicitation N0024-14-R-6303″.

July 30/14: GAO weighs in. The US GAO releases another LCS-related report, which looks at overall ship weight and addresses ship mission packages. The LCS-2 Independence Class in particular lacks weight flexibility, maxing out at just 3,188.0 tons for its Naval Architectural Limit (NAL). The LCS-1 Freedom Class has a better weight margin and 3,550 ton NAL, but far less internal space. Meanwhile, a proposed move to shift both classes to a common SeaRAM air defense system up top would add extra weight to the LCS-1 class, and may create seakeeping issues. In terms of the mission packages, it means that the 105 ton limit is likely to be a hard ceiling, which could make full exploitation and modernization more difficult and more costly. It’s already hitting the MIW/MCM package:

“Navy weight estimates for increment 4 of the MCM mission package, however, do not reflect all the systems being acquired for that package. Space and weight constraints have required the Navy to modify how it intends to outfit increment 4 of the MCM mission package. Although the Navy plans to acquire all the systems planned for that increment, space and weight limitations will not allow LCS seaframes to carry all of these systems at one time. According to LCS program officials, MCM mission commanders will have either (1) the Unmanned Influence Sweep System and the unmanned surface vehicle that tows it, or (2) the minehunting Surface Mine Countermeasures Unmanned Undersea Vehicle—called Knifefish – available – but not both systems. As a result, LCS seaframes outfitted with the increment 4 MCM package may have decreased minesweeping or mine detection capability.”

Mission system related recommendations from the front-lines include replacing the LCS-1 variant’s “unreliable and poorly performing” WBR-2000 electronic warfare system from Argon ST, storing sonobuoys on board even if the ASW package isn’t loaded so that the ship has some ability to react, and developing an ISR (intelligence, surveillance and reconnaissance) mission package to augment existing capabilities. Of course, sonobuoys on board add weight, and an ISR module that might otherwise take advantage of the LCS-2 Independence Class’ spacious mission package area may not be usable alongside other modules if the result is too much weight. Sources: GAO-14-749, “Littoral Combat Ship: Additional Testing and Improved Weight Management Needed Prior to Further Investments.”

May 8/14: MH-60S AMCM. Sikorsky in Stratford, CT, receives a $7.9 million firm-fixed-price delivery order for MH-60S Aircraft Mine Counter Measure Removable Mission Equipment B Kits. AMCM kits convert the helicopters into mine-countermeasures specialists that can accept specialized equipment.

All funds are committed, using US Navy FY 2012 & 2013 aircraft budgets; $4.3 million will expire on Sept 30/14. Work will be performed in Stratford, CT, and is expected to be complete in April 2016. US NAVAIR in Patuxent River, MD, manages the contract (N00019-14-G-0004, DO 4007).

March 31/14: GAO Report. The US GAO tables its “Assessments of Selected Weapon Programs“. Which is actually a review for 2013, plus time to compile and publish. With respect to the mission modules, The Navy isn’t happy with the GAO’s comparison of the program against the FY 2008 baseline, as it doesn’t reflect the total acquisition. GAO responds that:

“In comparing the 2007 estimate with the acquisition program baseline, we used the Navy’s 2007 data, which included full procurement costs but only five years of development cost. The Navy has acquired eight packages [4 MCM, 4 SUW, will add 2 MCMs in FY 2014] without proving capability through operational testing…”

Which GAO sees as a bad idea. GAO program totals are reflected in this article’s charts, and their comments regarding the readiness level and timing of the “LCS Packages Program” have been discussed in detail by DOT&E and by other GAO reports.

March 25/14: AMNS. Raytheon Integrated Defense Systems in Portsmouth, RI receives a $17.7 million contract modification for 3 Airborne Mine Neutralization System (AMNS) low-rate initial production systems, engineering services, and support.

All funds are committed immediately using FY 2012 & 2013 Navy budgets, and $5.2 million will expire on Sept 30/14. Work will be performed in Portsmouth, RI, and is expected to be complete by May 2016. US NAVSEA in Washington, DC manages the contract (N00024-10-C-6307).

3 AMNS

Feb 25/14: CRS Report. The US Congressional Research Service revises their Background and Issues for Congress report. While the report includes useful information about the program’s history, and details some of the current problems with both seaframes, the report’s pricing for mission packages is very useful.

According to an Aug 26/13 Navy document, base equipment for all sets is $14.9 million, and the MCM Package itself is $97.7 million, for a total of $112.6 million. At present, it’s at least twice as expensive as any other mission package, and compares to the price of a full minesweeping ship. Unfortunately, it’s hard to see the basis for saying:

“When assessed in terms of ability to perform the LCS program’s three primary missions [Mines, Small boats, and Submarines in shallow waters], the LCS fares well in terms of weaponry and other ship features in comparisons with frigate and corvette designs operated by other navies.”

The MCM package has been cut down sharply, continues to report problems, and hasn’t been trusted enough for fielding despite a clear need. It is better than ships not designed to do minesweeping at all, but is it better than a minesweeping ship with similar costs? The SUW package is a joke, outclassed by many frigates and corvettes. ASW hasn’t even been fielded yet, and some LCS aspects like waterjet propulsion are ill-suited to that mission. How, exactly, do we go from there to the conclusion above? It might become true one day, but it isn’t true yet. Sources: US CRS, “Navy Littoral Combat Ship (LCS) Program: Background and Issues for Congress”.

MCM costs

Feb 24/14: LCS cut. The Pentagon’s FY 2015 pre-budget briefing on the LCS seems to say that the number of ships will drop to 32, which would have implications for the number of mission modules:

“Regarding the Navy’s Littoral Combat Ship, I am concerned that the Navy is relying too heavily on the LCS to achieve its long-term goals for ship numbers. Therefore, no new contract negotiations beyond 32 ships will go forward. With this decision, the LCS line will continue beyond our five-year budget plan with no interruptions.

The LCS was designed to perform certain missions – such as mine sweeping and anti-submarine warfare – in a relatively permissive environment. But we need to closely examine whether the LCS has the protection and firepower to survive against a more advanced military adversary and emerging new technologies, especially in the Asia Pacific. If we were to build out the LCS program to 52 ships, as previously planned, it would represent one-sixth of our future 300-ship Navy. Given continued fiscal constraints, we must direct shipbuilding resources toward platforms that can operate in every region and along the full spectrum of conflict.”

They haven’t actually terminated the program at 32, and they can negotiate for up to 8 ships beyond the current block buy that ends in FY 2015. Even so, the Mission Module program is likely due for an adjustment. Sources: US DoD, “Remarks By Secretary Of Defense Chuck Hagel FY 2015 Budget Preview Pentagon Press Briefing Room Monday, February 24, 2014″ | Bloomberg, “Hagel Expands on Reservations’ About Littoral Combat Ship”.

LCS cut to 32

Feb 19/14: AQS-20. Raytheon IDS in Portsmouth, RI receives a $35.5 million fixed-price-incentive contract for 3 AN/AQS-20A sonar sets with ancillary equipment. This contract includes options which, if exercised, would bring the cumulative value of this contract to $199.7 million.

All funds for the initial buy are committed immediately, using FY 2013 & 2014 budgets. Work will be performed in Portsmouth, RI (56%); Tucson, AZ (21%); Pawcatuck, CT (6%); Middletown, RI (5%); Glen Rock, NJ (2%); Windber, PA (2%); Cincinnati, OH (1%); Big Lake, MN (1%); Woodland Hills, CA (1%); Lewisburg, TN (1%); Huntsville, AL (1%); Poway, CA (1%); North Springfield, VT (1%), and Hampton, VA (1%), and is expected to be complete by February 2015. This contract was competitively procured, with 2 offers received by US NAVSEA in Washington, DC (N00024-14-C-6302).

3 AQS-20A

Feb 5/14: MCMs. The US Navy will transport USS Avenger [MCM 1] and USS Defender [MCM 2] back from Japan aboard a heavy-lift ship, for decommissioning back in the USA. They’ll send 2 ships of the same class back to Sasebo, Japan aboard heavy-lift ships: USS Pioneer [MCM 9] and USS Chief [MCM 14].

That will leave the USN with 11/14 aged Avenger Class minehunters, and no ships at all of the newer MHC-51 Osprey Class. LCS needs to step up very soon. Sources: USN Pacific Fleet, “Navy to Replace Forward Deployed Mine Countermeasure Ships in Japan”.

Jan 28/14: DOT&E Testing Report. The Pentagon releases the FY 2013 Annual Report from its Office of the Director, Operational Test & Evaluation (DOT&E). AMCM’s components are included, and the overall verdict is: not much has changed since the Jan 17/13 DO&E report, or the July 22/13 GAO report.

AMNS UUV: Faced live-on-live testing in a number of locations. Still has issues accurately locating mines, especially in currents, plus reported problems with compass corrections and fiber-optic communications losses. No word on the progress re: a handling device that addresses inadequate clearance under the launch and retrieval system, which could doom AMNS if not fixed and destroy all that’s left of AMCM’s mine neutralization options.

The planned FY 2013 operational assessment slipped, so FY 2014’s shore and LCS-based testing will tell. If it works, IOC is expected in 2016, but it will take additional AMNS development to give the MCM module any near-surface neutralization capability.

ALMDS laser: The prediction that the Navy would feel obliged to keep it from lack of alternatives has proven true. Same issues with false positives and detection failures, to which DOT&E adds detection depth that’s short of requirements. Operational Assessment Phase B is scheduled to occur from USS Independence in Q4 2014 – Q1 2015.

To compensate for ALMDS’ depth issue, the USN will have to extend the detection zone for the AQS-20A, possibly by towing it behind a USV (RMS = RMMV + AQS-20), but they haven’t tested that yet.

AQS-20A sonar: Problems with determining mine depth and false positives, and longer area scan times, are mentioned but not dwelt on. The Navy’s upgrade effort (q.v. July 1/13) expects to begin developmental testing in FY 2014.

RMMV snorkeling USV: Despite 438 hours of in-water contractor testing, and reports of improved reliability, DOT&E takes serious issue with the way the improved system was tested:

“DOT&E’s review showed that the Navy’s assessment excluded some critical failures and was based on failure definitions and scoring criteria that were inconsistent with those used during the program’s Nunn?McCurdy review; the estimates also do not reflect the expected reliability in more operationally realistic mission scenarios where vehicle usage is more stressed…. reliability may not have improved sufficiently to enable an LCS with two RMMVs onboard to complete the desired area search without having to return to port more often than currently planned and desired to obtain replacements.”

Dec 9/13: RMS/WLD-1 testing. The RMS (remote minehunting system: WLD-1 USV + AQS-20A sonar) completes developmental testing, to see if it can finally meet reliability, suitability and effectiveness requirements. The tests ran from Oct 22/13 – Dec 9/13, and the US Navy says that the system achieved its test objectives. We’ll know more when DOT&E publishes their early 2014 report.

RMS operational assessment is scheduled for January 2014, off the coast of Palm Beach, FL. The complete LCS mine countermeasures mission package will undergo developmental testing in summer 2014, but initial operational test and evaluation (IOT&E) is scheduled for 2015. Sources: USN, “LCS Remote Minehunting System Completes Developmental Testing”.

Oct 24/13: ALMDS RFP. FBO.gov posts solicitation #N00024-13-R-6318:

“The Naval Sea Systems Command (NAVSEA), on behalf of the Program Executive Office Littoral Combat Ships (PEO LCS), intends to issue a Request for Proposal (RFP), under full and open competition, to procure AN/AES-1 Airborne Laser Mine Detection Systems (ALMDS) with options to procure additional systems FY14 through FY17. This requirement also includes options for engineering support services (ESS) each year, support equipment, depot services and software support.”

The Navy could buy up to 4 per year. One of the full solicitation’s puzzling lines said that “PMS495 is the program manager for ALMDS and NSWC PCD is the Technical Design Agent (TDA).” The military does hand over TDA roles to private industry under some arrangements, but it’s also normal for the military to retain design authority and responsibility for military technology that is proprietary to a private company. Discussions with Northrop Grumman have confirmed that ALMDS remains their product, which means that any competitor would need to present their own finished alternative.

FY 2013

MH-60S “discovered” to lack the power to operate some AMCM systems, over 7 years later; IOC delays, as GAO and testing reports don’t inspire much optimism; Contracts & event updates for various sub-systems; non-AMCM Kingfish systems deployed to the Gulf, as AMCM isn’t ready.

MH-60S w. AQS-20 – out
(click to view full)

Sept 3/13: Program shifts. With over $50 billion in cuts coming, the Office of the Secretary of Defense’s ALT POM reportedly proposed to end LCS buys with the current contract, at just 24 ships. The Navy is pushing to buy at least 32. On the other hand, OSD is reportedly insisting that the Navy place a top priority on fielding the mine countermeasures (MCM) module, in light of challenges around the Strait of Hormuz and elsewhere. One would think this would have been obvious years ago. Sources: Defenseworld, “U.S. To Limit Littoral Combat Ship Purchase”.

Aug 6/13: SMCM testing. The Knifefish UUV successfully completes comprehensive risk reduction testing. Tests included key payload components (high-fidelity SONAR, ultra-high-density data storage/ recording), key propulsion components (quieter, more powerful propulsion) and key software interface elements. Given the problems encountered in other elements, early verification the hardware architecture and critical areas of hardware and software integration is a good idea.

Will it make a difference? SMCM is an Increment 4 system, and 2017 is still a few years away. We won’t really know until operational testing of the full system takes place against realistic challenges, in a realistic environment. General Dynamics.

LCS & Mission modules
2012-2019
(click to view full)

July 22/13: GAO Report. The US GAO releases “Significant Investments in the Littoral Combat Ship Continue Amid Substantial Unknowns about Capabilities, Use, and Cost”. With respect to MCM, GAO describes its performance as “poor”, which is why the Pentagon has been buying interim systems like the Atlas SeaFox and Hydroid’s MK18 MOD 2 Kingfish, and relying on the existing CH-53s with their towed sleds. The Navy is touting LCS MCM Increment 1 as a big improvement, but performance is shaky, and they may need to keep those ‘interim’ options for a while. The first true area mine-clearing capability only arrives in 2017, with Increment 3’s USV/UISS combination, and its influence sweep system won’t detonate contact mines. LCS’ need to do post-mission analysis also means that it will lack existing ships’ ability to find and neutralize mines at the same time. Those are 2 separate phases for LCS, which is likely to mean longer sweeps, and hence less coverage.

AMNS UUV: Accurately locating mines is a challenge, because the water and the AMNS sensor are both moving, which can make mines look like they’re moving. They’re working on software fixes, along with an alternative load and handling device that addresses inadequate clearance under the launch and retrieval system. If they can’t fix the load and handling device before FY 2014 operational tests, the whole MCM module is in trouble.

ALMDS laser: Failures to detect and false positives are still big problems, and the multiple-pass tactics used to compensate will take much more time to conduct searches. Our conclusion that despite its problems, the Navy’s lack of alternatives would push them to keep the AES-1 (q.v. Jan 17/13)? Still looking pretty good. The USN still wants to issue an RFP for 15 more right away, while funding more R&D for improvements that would require retrofits later.

AQS-20A sonar: This 20-year old program is still having trouble with the challenging task of determining how deep a found mine is – it’s much harder than it sounds in shallow water. False positives in 2/3 search modes are also a problem, and the tactical response of re-querying contacts means that searches will take about 2x as long. The Navy has launched an upgrade effort (q.v. July 1/13), which would be the 1st since 1994, and some of the 30 towed sonars in stock will get retrofits. The goal is 94 units.

RMMV snorkeling USV: Has improved from 7.9 hours to 45 hours MTBF (goal: 75), but the November 2011 testing was in a very calm environment, and December 2012 testing with LCS showed much higher than predicted failure rates. The 10 existing WLD-1 RMMV systems will need retrofits, with more buys to begin in 2017 – but if the Navy has to speed up MCM fielding, they may not have that much time to fix the WLD-1s.

Other: “…the concept of employment for the MCM mission package currently does not include embarked explosive ordinance disposal teams that are used on the existing mine countermeasures fleet… they are investigating how to integrate this capability…. to not only [eliminate] mines, but… exploit found mines for intelligence value, and OPNAV has identified their absence as a capability gap.”

Sources: GAO-13-530 Report | Congress HASC hearing Part 1 and Part 2 .

Major GAO report recommends program slowdown

July 1/13: AQS-20 upgrade. Raytheon IDS in Portsmouth, RI receives a $14.2 million cost-plus-fixed-fee delivery order. They’ll upgrade the AN/AQS-20A mine hunting sonar’s 3493-AS-780-9 configuration with a high frequency wide band forward look sonar, multi-function side looking sonar, and associated components. $2.5 million in FY 2013 RDT&E funding is committed immediately.

The work will be performed in Portsmouth, RI, and is expected to be complete by by September 2014. This contract was not competitively procured in accordance with the “1 responsible source” provisions in 10 U.S.C. 2304(c). The US Naval Surface Warfare Center in Panama City, FL manages the contract (N61331-12-G-0001, #0004).

June 27/13: MK18 Kingfish. The US Navy announces that it has deployed MK18 MOD 2 Kingfish mine-detecting UUVs to the “5th Fleet Area of Responsibility” (read: Persian Gulf). The contractor-operated Kingfish isn’t part of AMCM, it’s an independent program based on the commercial REMUS 600, and it’s replacing the in-theater MK18 MOD 1 Swordfish that’s based on Kongsberg Marine’s smaller REMUS 100. The Kingfish’s Small Synthetic Aperture Sonar Module (SSAM) configuration provides wider sonar swath scan, higher resolution imagery, and buried target detection.

While it’s currently contractor-operated, the US Navy does intend to begin operating them in 2015. It probably could be loaded onto a Littoral Combat ship as an interim measure, ahead of the planned 2017 in-service date for Bluefin Robotics’ Knifefish SMCM UUV. US Navy.

Emergency alternatives

June 20/13: RMS testing. The Navy announces that the 2nd and final phase of RMS reliability testing have gone well, after over 47 missions and 850 testing hours at Lockheed Martin’s Riviera Beach, FL facility.

Initial analysis of the tests reportedly shows that RMS reliability is ahead of where it was expected to be at this point, and that it “demonstrated the required reliability necessary to meet program requirements.” If that’s true, emergency deployments become thinkable, but the statement can be weaseled. We await DOT&E reports to supply precise figures, and compare them to original program goals. RMS program manager Steve Lose says that the next phase of developmental testing will begin in summer 2013. US Navy.

May 21/13: RMS support. Lockheed Martin Corp. in Palm Beach, FL receives a maximum $52.9 million cost-plus-fixed-fee contract to perform maintenance, testing and integration of the WLD-1 Remote Minehunting System with Littoral Combat Ship (LCS) mission modules and ships. Improvements to the USV’s below-target reliability and effectiveness are scheduled to continue until 2015.

Work will be performed in Palm Beach, FL (80%), and Syracuse, NY (20%), and is expected to be complete by May 2016. $8.5 million in FY 2013 Research, Development, Test & Evaluation funding is committed immediately, with the rest allocated as needed. This contract was not competitively procured, pursuant to 10 U.S.C 2304(c)(1) “one responsible supplier,” by US Naval Sea Systems Command in Washington, DC (N00024-13-C-6300).

April 18/13: AMNS support. BAE Systems Electronics’ Maritime Services Division in Portsmouth, UK receives an $8.3 million contract modification related to their Archerfish system. The initial announcement included program management and support, calibration and maintenance services, a cost-plus-fixed-fee CLIN for engineering services support, and a system upgrade providing “a significant reliability and performance improvement to the current MK-105″. This April 10/13 announcement was a mistake – the Mk.105 is a sled towed by a large MH-53E Sea Dragon helicopter.

An April 18/13 correction says that the contract will only “complete production and delivery of Archerfish neutralizers (destructor, mine neutralization, Airborne EX64 Mod 0 Archerfish).” We suspect that this is also imprecise, given plans to order more MIW packages. Completion of Archerfish production within existing orders is a more likely meaning.

Work will be performed in Portsmouth, UK, and is expected to be complete by September 2014. $7.8 million in FY 2012 and 2013 Navy Weapons Procurement funding is committed immediately. The Naval Surface Warfare Center Panama City Division in Panama City, FL manages the contracts (N61331-08-C-0012).

April 8/13: SMCM. General Dynamics Advanced Information Systems announces a successful Critical Design Review for the Knifefish UUV. The SMCM team will now begin building 3 engineering development modules. An operational version is expected to attain initial operational capability in 2017. GD-AIS.

Knifefish CDR

April 8/13: COBRA development. BAE Systems announces a $20 million contract to develop the Coastal Battlefield Reconnaissance and Analysis (COBRA Block I) system for detecting and plotting land-based mines and shore obstacles in daylight, with some near-shore shallow water capability. The prototype system uses a fast-scanning LIDAR laser, 3D imaging camera, and target recognition algorithms.

BAE has been working with the Office of Naval Research to mature the associated LIDAR technologies, under Section 819 of the National Defense Authorization Act, which is aimed at the development of advanced components or prototypes. Work will be performed at the company’s facilities in Honolulu, HI; Greenlawn, NY; Acton, MA; and Hudson, NH.

March 28/13: GAO Report. The US GAO tables its “Assessments of Selected Weapon Programs“. Which is actually a review for 2012, plus time to compile and publish. The Navy owns 3 MCM (mine, 1st delivery Sept. 2007) and 4 SUW (“surface warfare”, 1st delivery July 2008) mission modules, and has completely re-started the ASW anti-submarine module. Several of the sub-systems in these modules are still experiencing performance problems, many components are still in development, and the Navy has yet to fully integrate these technologies and test them on board an LCS in a realistic environment. In October 2012, DOD delegated future decision authority to the Navy and requested an acquisition program baseline within 60 days – which was not delivered on schedule.

For MCM, The Navy plans to accept 1 more in 2013, but it doesn’t meet requirements. The MH-60S helicopter can’t tow the AQS-20A sonar as planned, the WLD-1 USV has performance issues, the ALMDS laser system gets too many false positives from surface reflections, and the RAMICS gun and OASIS decoy are out. Nonetheless, the Navy describes recent MCM tests as “very successful”. The Navy plans to conduct developmental testing in FY 2014 and establish initial operational capability with 7 MCM modules in September 2014. Full operational capability isn’t expected until 2018, when the Navy is expected to have 21 LCS ships, of 30 ordered.

March 18/13: IOC delays. Jane’s quotes director of navy staff Vice-Admiral Richard Hunt says that t

Show more