2013-11-04



Land-based SM-3 concept
(click to view full)

SM-3 Standard missiles have been the backbone of the US Navy’s ballistic missile defense plans for many years now, and are beginning to see service in the navies of allies like Japan. Their test successes and long range against aerial threats have spawned a land-based version, which end up being even more important to the USA’s allies.

In July 2008 the US Missile Defense Agency began considering a land-based variant of the SM-3, largely due to specific requests from Israel. Israel currently fields the medium range Arrow-2 land-based ABM (Anti-Ballistic Missile) system, and eventually elected to pursue the Arrow-3 instead of SM-3s. Once the prospect had been raised, however, the US government decided that basing SM-3 missiles on land was a really good idea. The European Phased Adaptive Approach to missile defense is being built around this concept, and other regions could see similar deployments.

EPAA & The SM-3 Option



Aegis Ashore
(click to view full)

The European Phased Adaptive Approach aims to use a combination of naval and land-based missile defense systems, which hope to share a common architecture and missile set. The core physical component is a “deckhouse” enclosure, containing the command and control center and a BMD-enhanced SPY-1(D) radar that’s similar to those aboard US Navy destroyers and cruisers. The software will be taken from the Aegis combat system on US Navy ships, beginning with version 5.0.1 and upgrading over time. A connected vertical launching system building will contain SM-3 missiles, which will also become more advanced as time goes on.

The USA is building 3 Aegis Ashore sites: one test site in Barking Sands, Hawaii, USA, and sites in Deveselu Air Base, Romania and Redzikowo, Poland. The GAO estimates that building these sites and bringing them to operational status will cost the USA about $2.3 billion. Beyond that, it’s hard to track program costs, because too many EPAA components have been changed or moved into other programs.

The European Phased Adaptive Approach



SM-3 Evolution:
4 EPAA stages
(click to view full)

The European Phased Adaptive Approach (EPAA) currently envisions 4 phases:

EPAA Phase 1, 2011-2015

In 2011, the US Navy expected to have naval SM-3 Block 1A missiles and ships fully in place, on more BMD-capable ships than the 2 Atlantic Fleet destroyers available in 2009, to pair with land-based AN/TPY-2 radars that are also used in the THAAD system. Another 4 destroyers will be forward-deployed to Rota, Spain in FY 2014-2015. Unfortunately, naval SM-3 Block 1 missiles cannot cover the Czech Republic at all, and can offer only limited coverage for Poland.

The Obama administration bowed to Russian pressure and picked the THAAD system’s AN/TPY-2 radar as the system’s ground accompaniment, to limit the distance they could see into Russian airspace. Even so, political support for that land-based deployment is likely to become a flash point again, and there is no guarantee against a 2nd round of Russian pressure. Turkey has agreed to host an AN/TPY-2 radar near Diyarbakir in SE Turkey, though they added conditions that the data must not be shared with Israel.

This will be the only EPAA option until 2015, which is beyond the Obama administration’s current term of office. During that interim period, AEGIS BMD system 4.0.1 will be rolled out beyond USS Lake Erie [CG 70], offering some capability improvements on board ship, and laying an open architecture foundation for future upgrades.

Meanwhile, NATO is working on its on Active Layered Theatre Ballistic Missile Defence (ALTBMD) command and control architecture as a parallel effort, and declared an “interim” capability in May 2012 after a successful multinational test.

ALTBMD will have European components to draw upon, including the national early-warning system under development by France. In August 2012, Poland announced that it was pursuing its own national BMD system, which may mirror many of France’s components.

On the naval front, the Netherlands is upgrading its 4 top-tier air defense frigates with ballistic missile tracking capability, and its ships are compatible with SM-3 missiles if they decide to purchase some.

The Franco-Italian Horizon Class already couples equally advanced radars with BMD-capable Aster-30 naval air defense missiles. The Aster-30 has been tested successfully against ballistic missiles, but in its current state it isn’t designed to address threats beyond the SRBM (

EPAA Phase 2, 2015-2018

In Parallel:
SAMP/T launch
(click to view full)

If progress continues per plan, 2015 would see advances on 2 fronts.

One front involves improved SM-3 Block 1B missiles, which will expand the range of coverage for American ships. Serious orders for the Block 1B missile began in 2011, but technical issues have delayed full production. That delay means that US Navy ships based in Europe will be competing with other priorities in Asia and around the USA, as they seek to host the new missiles. A slower phase-in that extends to 2018 now looks most likely.

The other element was to be a land-based “Aegis Ashore” site at Deveselu Air Base, Romania, hosting SM-3 missiles instead of Boeing’s longer-range, fixed-location GMD system. Aegis Ashore designs appear to have shifted from an easily-deployable configuration, toward high-investment fixed sites that are similar to the GMD program they replaced. The Romanian deployment would use SM-3 Block 1B missiles from an emplaced Mk.41 VLS launcher, and be controlled by a SPY-1D radar and AEGIS BMD 5.0.1 combat system.

If successfully deployed, this is a defense against short and medium range missiles (SRBMs & MRBMs), with some capability against intermediate range missiles in the 1,850-3,500 mile class (IRBMs). On the other hand, the location of these defenses still leaves central Europe mostly unprotected.

During Phase 2, NATO’s Active Layered Theatre Ballistic Missile Defence (ALTBMD) command and control network will be operational at an initial level. France, Italy, and possibly Poland will have armed land-based BMD systems of their own deployed, and it’s likely that ALTBMD compatible BMD-capable ships will be fielded. The Netherlands is already preparing its vessels for missile tracking and SM-3 hosting, and the Aster-30/ PAAMS combination is fielded on British, French, and Italian ships.

EPAA Phase 3, 2018-

Around 2018, America expects to deploy the longer-range, 21″ diameter SM-3 Block II missile, on ships and (if deployments have been accepted) on shore. The US MDA would add Redzikowo, Poland to its list of land-based sites, defending Northern Europe with SM-3 Block 1B & Block IIA missiles, controlled by an AEGIS BMD 5.1 combat system.

This system would be intended to kill SRBM, MRBM, and IRBM threats, with some capabilities against full intercontinental range missiles (ICBMs). Gen. Cartwright has stated that just 3 SM-3 Block II locations would be able to cover all of Europe, but that missile is an earlier-stage R&D effort, with all the expected implications for dates and certainty of capabilities.

EPAA Phase 4, 2020+

Effectively cancelled.

The USA was going deploy a new Next-Generation Aegis Missile (SM-3 Block IIB) design, to improve performance and begin to field a credible anti-ICBM capability. Technical issues became a serious problem, once experts concluded that the initial sites picked for EPAA aren’t all that helpful for defending the USA. A liquid-fuel booster could be used to boost interceptor speeds, but that isn’t safe to use on ships. Even though the best place to defend the USA against an ICBM launched from Iran is from the middle of the North Sea. Now throw in a planned development schedule defined by a wild-guess political promise, rather than solid information. The whole thing was a mess, and in March 2013, it was “restructured” into into an R&D program by the Pentagon.

Aegis Ashore

AN/TPY-2
(click to view full)

Making these things happen requires a number of additional steps. AN/TRY-2 radars will provide initial services during Phase 1, and will continue to play a supplemental role thereafter in both EPAA and NATO’s ALTBMD.

Beyond Phase 1, the USA has shifted to a larger and more permanent basing structure, which removes some of the benefits of switching away from GMD. The US Missile Defense Agency is building an “Aegis Ashore” test complex near Moorestown, NJ, and another at its missile defense testing center at Barking Sands, Kauai, Hawaii. The Hawaiian complex is hosting a land-based Mark 41 launcher, a 4-story building with a SPY-1 radar, and three 125-foot tall test towers.

In order to meet the 1st deployment of Aegis Ashore in Romania in 2015, this Aegis Ashore test bed and prototype had to be built by 2012, but now looks set to finish in November 2013 instead.

Poland is being considered for Aegis Ashore deployment in 2018, but the country is beginning to diversify its options. The September 2011 agreement with the USA is still in force, but Poland is determined to have its own missile defense infrastructure, and may choose to place their bets on a parallel NATO/ European system. Their other option would likely involve American PATRIOT and/or THAAD systems.

Beyond Europe

Aegis Ashore may spread beyond Europe. In the Pacific, Japan is already deploying SM-3s at sea, and may find land-based counterparts useful. Its neighbor South Korea shares Japan’s worries about North Korea’s evil and semi-stable regime; the ROK intends to load shorter range SM-6 missiles on its AEGIS destroyers, is buying and deploying Patriot PAC-2 GEM+ missiles, and has contracted with Israel for “Green Pine” air and missile defense radars. Its cruiser-size KDX-III AEGIS destroyers could be modified for a ballistic missile defense role, but land-based SM-3s linked to air and naval systems offer an option that doesn’t require naval upgrades.

The other country that has been linked to land-based SM-3s had a more complicated set of choices, and possible rationales. See Appendix A’s coverage of Israeli deliberations, which ended with a decision to deploy their own Arrow technology instead.

The Missiles

SM-3 seeker: target!
(click to view full)

With a maximum range of about 300 miles/ 500 km, the Standard Missile 3 Block I (SM-3) has just 1/5th to 1/6th the reported reach of GMD’s Ground Based Interceptors, but a longer reach than current mobile land options like THAAD. SM-3 has 4 stages. The booster motor and initial stage launch the missile, and take it out of the atmosphere. Once it goes “exo-atmospheric,” the 3rd stage is used to boost the missile higher, and also corrects its course by referencing GPS/ INS locations. The final stage is the LEAP kill vehicle, which uses infrared sensors to pick out the target, then guides itself in to ram it. That target is expected to be an enemy ballistic missile, but America’s shoot-down of its own ailing satellite in 2008 showed that the same technology can be used against any low earth orbit object.

The introduction of Raytheon’s SM-3 Block II variant will widen the missile’s diameter from 13.5″ to 21″, greatly extending its range and speed. That means better performance against longer range missiles that move faster, and offer different trajectories. Block II weapons will add the ability to handle longer-range, higher-flying IRBM (Intermediate Range Ballistic Missiles, usually 3,000-5,000 km range), and even offer some hope against global-strike threats like ICBM (Inter Continental Ballistic Missile) warheads. SM-3 Block IIA is currently expected to debut around 2015, but testing and other requirements mean it won’t be part of EPAA until 2018 or later.

Contracts & Key Events

Because of the intertwined nature of the EPAA system, many contracts will be covered elsewhere. The AN/TPY-2 radar has its own article, as does the THAAD theater air defense system the TPY-2s were originally developed for. Standard Missile family contracts also have their own FOCUS article, as does the ubiquitous Mk.41 vertical launching system that will be part of the Aegis Ashore complex.

Unless a contract of these types specifically notes dedicated assets for EPAA/Aegis Ashore, or is directly germane to key program technologies, they will not be covered here.

FY 2014

2013 BMD conference
click for video

Oct 31/13: SM-3-IIA. Raytheon and Mitsubishi Heavy Industries have completed the SM-3 Block IIA’s Critical Design Review (CDR), and the USA and Japan have agreed on workshare arrangements that allocate development responsibility between each country. SM-3-IIA is the key new piece in EPAA Phase 3, and the successful CDR keeps it on track for flight test in 2015. Sources: Raytheon, Oct 31/13.

Oct 28/13: Romania. American, Romanian and NATO officials break ground on the Aegis Ashore facility at Devsulu AB, based on the September 2011 accord between the United States and Romania.

Romania’s SC Glacial PROD SRL has already done $3.3 million in site-activation work, including temporary offices, container housing units, a warehouse, and a vehicle inspection area. US Navy, “US, Romania begin work on Aegis Ashore missile defense complex”.

FY 2013

SM-3 Block IIB canceled; European multi-system test; GAO Report; MBDA’s Aster-30 SAMP/T and USA’s GBI advance in parallel.

NATO BMD concept
click for video

July 18/13: Infrastructure. KBR announces a $134 million Aegis Ashore build-out contract from the U.S. Army Corps of Engineers’ Europe District. The 269-acre site on Romania’s Deveselu Air Base will include a 4-story radar deckhouse structure relocated from New Jersey, security fencing, plus facilities and infrastructure including roads, support buildings, communications, security and utilities.

April 26/13: The GAO looks at the Missile Defense Agency’s full array of programs in report #GAO-13-342, “Missile Defense: Opportunity To Refocus On Strengthening Acquisition Management.” With respect to EPAA/ Aegis Ashore, the report reiterates concerns from the GAO’s March 30/12 and April 20/12 reports (q.v.): unstable cost baselines, concurrent testing & development, and questions about the ability to use the SPY-1′s radar frequencies without creating spectrum interference problems for the host nations.

The program office sees its greatest risks as (1) integration testing in Hawaii and New Jersey, (2) potential shipping or transportation delays, and (3) construction delays for the operational and test facilities. The disconnect stems from a fundamental disagreement about the project’s level of risk. With the program citing similarity to sea-based Aegis BMD as a reason for low risk. If the GAO’s concerns re: spectrum issues come true, however, the similarity will drop quickly. An analysis for Romania is due in 2013, but Poland will present its own independent situation. Meanwhile, knowledge gained from flight tests that begin in 2014 can’t be used to guide construction. Under a new plan, even Poland’s 2018 site will be ordering advance construction components in January 2014.

The GAO estimates the cost to develop and build the Polish facility at $746 million, from R&D to operational status. As such, the MDA reported costs of all 3 Aegis Ashore facilities is $2.3 billion. The GAO wonders about the US MDA’s portfolio balance, given R&D needs for multiple missiles, plus full build out of Aegis Ashore and full production of the SM-3 Block IB, plus operation, support, and testing for the iffy GMD system. The GAO recommends Analysis of Alternatives studies as one way to help manage that portfolio.

April 18/13: Poland. US State Department official Frank Rose (Deputy Assistant Secretary, Bureau of Arms Control, Verification and Compliance) speaks to the Polish National Defense University in Warsaw about Aegis Ashore. Poland is looking to build a national missile defense architecture, so Rose stresses the important of interoperability with NATO’s Active Layered Theater Ballistic Missile Defense (ALTBMD) command-and-control system (q.v. May 21/12). He adds that:

“The Ballistic Missile Defense Agreement between the U.S. and Poland entered into force in September of 2011. This agreement places a land-based interceptor site, similar to Phase 2, in Redzikowo, and includes the SM-3 Block IIA interceptor. This EPAA Phase 3 site is on schedule and on budget for deployment in the 2018 timeframe. The interceptor site here in Poland will be key to the EPAA. Not only will it protect Poland itself, but when combined with the rest of the EPAA assets, Phase 3 will be able to protect all of NATO Europe against ballistic missile threats from the Middle East.”

March 15/13: Following North Korea’s 3rd nuclear test attempt, the new US Secretary of Defense announces that the USA will add 14 more ground-based interceptors at Fort Greely, AK and Vandenberg AFB, CA, boosting the total number from 30 back to the 44 planned by the previous administration. At the same time, they’re re conducting Environmental Impact Studies for a potential additional GBI site in the United States.

They’re paying for this by “restructuring” the SM-3 Block 2B Next Generation Aegis Missile program, whose 2020 deployment date was never realistic (vid. April 20/12 GAO report). It’s effectively canceled.

Japan will continue to collaborate with the USA on the SM-3 Block 2A program, and will get a 2nd AN/TPY-2 radar on its territory. Pentagon AFPS | Full Speech Transcript | Boeing | CS Monitor re: Russian angle.

March 6/13: SAMP/T. MBDA’s SAMP/T system is used against a 300km tactical ballistic missile target, operated by a joint French & Italian crew. It scores a successful intercept, and Eurosam describes it as:

“…the first SAMP/T firing test in a NATO environment, close to what would be an operational use… [within] the alliance ALTBMD programme…. DGA sensors did provide the firing units and the command levels long-range detection data on A L16 radio network. DGA MI, in Bruz, acted as a L16 [Link-16] national C2, interfacing in L16 both with NATO BMDOC [in Ramstein, Germany], via L16 JREAP and with SAMP/T.”

The SAMP/T system is now widely deployed in France & Italy, with 15 land-based units equipped, alongside naval use of its Aster-30 missile from the countries’ Horizon Class frigates. France’s DGA [in French] | Eurosam.

Feb 11/13: GAO Report. GAO-13-382R: “Standard Missile-3 Block IIB Analysis of Alternatives” throws cold water on the idea that the SM-3 Block 2B can defend the USA from bases in Poland or Romania. The geometry isn’t very good, and success may require a boost-phase intercept. Those are very tricky, and have limited range, because you have to hit the enemy missile within a very short time/ distance.

Some members of the military think it’s possible, at an initial estimated budget of $130 million extra. The problem is the tradeoffs. Liquid propellants can boost speed, but are unsafe on Navy ships due to the fire risks. On the other hand, the middle of the North Sea offers much better missile intercept geometries. Maybe Block 2B shouldn’t be land-based at all, but then why replace Block 2A in such an expensive way? MDA still needs to set the future missile’s performance requirements and limits. Where should the tradeoffs be made?

This brings us to the GAO’s point about the MDA developing the SM-3 Block IIB under a framework that dispenses with a good chunk of the usual paperwork, including an Analysis of Alternatives. On reflection, this is more than a bureaucratic point driven by “records show that programs doing the paperwork usually fare better.” One of the EPAA’s key underlying assumptions is now in question, and the proposed solution must now be in question as well. Is the best solution for land-based European missile defense still SM-3 Block IIB? What are the tradeoffs vs. using a system like the NRC’s recommended GMD-I from the USA (vid. September 2012 entry), and making Block 2B a ship-deployed missile? Does Block 2B even make sense now? Without good answers regarding capability, options, and maintainability, how does the MDA decide – or pick the right winning combination among the Block 2B competitors? A full AoA could improve those answers, and hence the odds of a smart pick.

Dec 21/12: Radar components. Raytheon IDS in Sudbury, MA receives $19.7 million for firm-fixed-price delivery order for radar components: Stabile Master Oscillator ordnance alteration kits, Radio Frequency Coherent Combiner ordnance alteration kits and associated spares, and material and installation services in support of the modernization effort on Navy ships and Aegis ashore units. This contract includes options which could bring the contract’s cumulative value to $22.9 million.

Work will be conducted in Norfolk, VA (63%); Andover, MA (27%); and Burlington, MA (10%), and is expected to be complete by June 2015. $19.7 million will be obligated at time of award. The Naval Sea Systems Command, Washington, D.C., is the contracting activity (N00024-11-G-5116, #0020).

Dec 21/12: AA HN-1. Lockheed Martin Mission Systems and Sensors in Moorestown, NJ receives a $57.3 million contract modification for an Aegis Weapon System in support of DDG 116 and the purchase of material assemblies to support Aegis Ashore Missile Defense System Host Nation #1, Romania.

Work will be performed in Moorestown, NJ (85%), Clearwater, FL (14%), and Akron, OH (1%), and is expected to be complete by January 2017. All contract funds in the amount of $57,336,086 are committed immediately. The Naval Sea Systems Command, Washington DC manages the contract (N00024-09-C-5110).

Dec 20/12: Trainer SDD. Lockheed Martin Mission Systems and Sensors (MS2), Moorestown, NJ receives a $20.7 million cost-plus-fixed-fee, firm-fixed-price contract for the Aegis Ashore Team Trainer. This trainer will be designed to meet the Aegis Ashore Missile Defense System (AAMDS) individual watch station and watch team training, qualification and certification requirements. This contract will also fund information assurance requirements for the trainer, an information assurance training course, an instructor operator training course, and travel associated with the trainer’s development.

$4.7 million are committed immediately. Work will be performed in Moorestown, NJ and is expected to be complete in October 2014. This contract was not competitively procured, pursuant to FAR 6.302-1 by the US Naval Air Warfare Center Training Systems Division in Orlando, FL (N61340-13-C-0007).

Dec 10/12: AA HN-1. Lockheed Martin Mission Systems and Sensors (MS2) in Moorestown, NJ receives a $45.9 million a contract modification for Aegis Ashore Engineering Agent engineering support and skid integration for “host nation” (which would be Romania) though “this is not a Foreign Military Sales [FMS] acquisition.” If the US military is buying it, it isn’t an FMS, even if they’re preparing to base it at a foreign location. This award raises the total contract’s value to date from $209.9 million to $255.8 million.

Work will be performed in Moorestown, NJ through Dec 31/15, and $7.8 million FY 2013 Research, Development, Test and Evaluation funds will get things going. The US Missile Defense Agency in Dahlgren, VA manages this contract (HQ0276-10-C-0003, PO 0044).

Nov 5/12: Networking. Boeing in Huntington Beach, CA receives a $16.7 million firm-fixed-price and time-and-material contract for gigabit ethernet data multiplex systems. They’ll be used in the DDG modernization program, new ship construction, and Aegis Ashore Systems. This contract includes options which could bring its cumulative value to $30 million.

Work will be performed in Camarillo, CA (57%), Smithfield, PA (33%), and Huntington Beach, CA (10%), and is expected to be complete by May 2015. $475,975 will expire by the end of the current fiscal year, on Sept 30/12. This contract was procured on a limited competition basis via the FBO.gov and Navy Electronic Commerce Online websites, with 2 proposals solicited and 2 offers received. The Naval Surface Warfare Center Dahlgren Division, Dahlgren, VA manages this contract (N00178-13-C-2000).

Oct 2/12: C2 Integration. ALTBMD. NATO’s NCI announces that “Ensemble Test 2″ has been successful, using NATO’s Combined Federated Battle Lab Network (CFBLNet) as a test bench. Participants included 12 laboratories from 5 Nations across 2 continents, and the systems included:

An Italian AN/TPS-77 transportable long range radar, built by Lockheed Martin

French and Italian land-based SAMP/T systems, using MBDA’s Aster-30 missile

Italy’s Horizon Class high-end air defense frigate, which uses the PAAMS combat system and Aster-30 missile

US, Dutch and German PATRIOT missile defence systems

A Dutch ADCF (De Zeven Provincien Class) high-end air defense frigate

A German SAM Operations Centre from Germany,

An American Aegis Ballistic Missile Defence System

The USA’s C2BMC (Command and Control, Battle Management, and Communications) system

The AN/TPY-2 radar that accompanies THAASD, and is part of EPAA

The USA’s huge Shared Early Warning System (SEW) radars

NATO’s Air Command and Control System (ACCS), the Air Command and Control Information Services (AirC2IS), CRC System Interface (CSI), and Interim Command and Control (ICC) system.

Firing missiles is the easy part. Having different command and control systems work together, which is required for any sort of coordinated defense, is difficult. Ensemble Test 3 is scheduled for May-June 2013. NATO NCIA.

FY 2012

NATO declares interim defensive capability; EPAA won’t really defend USA; SM-3 Block IIs may not meet EPAA schedule; Costs keep rising; Poland independent, but not out.

Operational
click for video

Sept 25/12: AA HN-1. Raytheon Integrated Defense Systems in Sudbury, MA a $43.6 million contract modification “for the production and integration of an Aegis Weapon System (AWS) and Missile Fire Control System in support of DDG 116, and an AWS in support of Aegis Ashore Missile Defense System Host Nation #1″ (HN-1, i.e. Romania). Raytheon makes the AN/SPY-1 radar transmitters and MK99 FCS illuminators.

Work will be performed in Andover, MA (80%), Sudbury, MA (15%), and Portsmouth, RI (5%), and is expected to be complete by September 2017. US Naval Sea Systems Command in Washington DC manages the contract (N00024-09-C-5111).

Sept 14/12: AA HN-1. Lockheed Martin Mission Systems & Sensors in Moorestown, NJ receives an $18.5 million contract modification for the production and integration of an Aegis weapon system in support of DDG 116, and the purchase of material assemblies to support Aegis ashore missile defense system Host Nation 1 (Romania).

Work will be performed in Moorestown, NJ (85%); Clearwater, FL (14%); and Akron, OH (1%); and is expected to complete by January 2017. US Naval Sea Systems Command in Washington DC manages the contract (N00024-09-C-5110).

September 2012: NRC report. The US National Research Council publishes “Making Sense of Ballistic Missile Defense: An Assessment of Concepts and Systems for U.S. Boost-Phase Missile Defense in Comparison to Other Alternatives.” The report staff have deeply impressive backgrounds related to missile defense, and their main conclusion is that very fundamental reasons of geography and physics make boost-phase defense systems a waste of time.

This includes AEGIS BMD systems. The report explains very clearly that the window for stopping a warhead before it has enough energy to hit “defended” areas makes it difficult to impossible to position a ship in a place that allows even future SM-3 Block II missiles to hit their target.

It also states that EPAA Phase IV is not likely to be an effective way to defend the United States, and recommends that the USA make changes to its own GMD system and radar set. They’re not advocating the dismantling of EPAA, just saying that the USA should have a system in which EPAA is about Europe’s defense, and the USA has a system that doesn’t depend on it.

Aug 30/12: Aegis Ashore. Lockheed Martin Mission Systems and Sensors in Moorestown, NJ gets an $8.3 million contract ceiling increase, to provide Aegis Ashore Engineering Agent (AAEA) long-lead-time materials for the complex being built at the Pacific Missile Range Facility (PMRF) in Hawaii. This brings the total contract value from $200.1 to $209.3 million.

Work will be performed in Moorestown, NJ through April 30/13, and $5 million in FY 2012 Research, Development, Test and Evaluation funds will be used as initial funding. The US Missile Defense Agency (MDA) in Dahlgren, VA manages the contract (HQ0276-10-C-0003, PO 0038).

Aug 10/12: CRS Report. The US Congressional Research Service issues its latest update of “Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress” [PDF]. Key issues highlighted or examined by Mr. O’Rourke include the cost of forward-deploying 4 destroyers to Spain, the FY 2013 budget’s proposal to slow the 2013-2020 ramp-up rate for BMD ships, the potential for European contributions to naval BMD, the inability to simulate China’s DF-21 ship-killing ballistic missile, SM-3 Block IIB risks, and concurrency and technical risk in the AEGIS BMD program generally.

With respect to the Spanish deployment (vid. Feb 16/12 entry), Rota can accommodate all of the new personnel, but infrastructure upgrades will be required. In total, the Navy estimated that it would incur approximately $166 million in up-front military construction, personnel, and maintenance costs; a small annual increase in operations and maintenance; and personnel costs of approximately $179 million – though really, you have to pay them wherever they are.

Aug 6/12: Poland fixing its “mistake”. Polish President Bronislaw Komorowski states that Poland is prepared to create its own anti-aircraft and missile defense system as part of a NATO shield, at a cost of $3-6 billion. With respect to the USA’s defensive plan, which Poland hasn’t rejected yet:

“Our mistake was that by accepting the American offer of a shield we failed to take into account the political risk associated with a change of president. We paid a high political price. We do not want to make the same mistake again.”

The missile and air defense system proposed by the Polish president would target all short and some medium range missiles, just like the initial 2 stages of the EPAA. The system would be part of the emerging NATO Missile Defense shield, but beyond that, details regarding radars, weapons, etc. would have to be fleshed out in subsequent contracts. Germany and France were specifically mentioned as potential partners, and MBDA’s naval PAAMS system and Aster-30 missiles have already been converted to a land equivalent of their own. Their SAMP/T is the logical competitor if Poland wants to buy a non-American system. Its weakness is that it wouldn’t be able to grow into a counter against IRBM or ICBM missiles, but that could make it a very good complement to an American system that did. Relations with Israel are close, and Boeing/IAI’s Arrow system does have the potential to kill long-range missiles, but past American behavior has been to use its weapon export rules against potential competitors to its favorite options. Polskie Radio | Forbes | German Marshall Fund of the United States | Russia’s RIA Novosti | UK’s The Telegraph | UPI | WSJ Emerging Europe.

June 27/12: FTM-18 test. USS Lake Erie [CG-70] with its AEGIS BMD 4.0.1 system successfully launches an SM-3 block IB missile to hit a separating ballistic missile target. This is the same configuration that will be used for the land-based Phase 2 of the USA’s European missile defense plan, and represents an important success for the SM-3 block IB after the FTM-16 failure. This firing makes the AEGIS & SM-3 combination 23/28 in intercept tests so far (82.1%), vs. 31/40 (77.5%) for all other missile defense system intercept tests. US MDA | Lockheed Martin | Raytheon.

June 7/12: Aegis Ashore. Lockheed Martin Mission Systems and Sensors (MS2) in Moorestown, NJ gets a contract ceiling increase of $9.8 million, increasing the total contract value to $197.4 million from $187.6 million. Under this modification, they’ll provide Aegis Ashore Engineering Agent Phase 2B support for the Host Nation 1 (Romania) skids and skids accessories.

Work will be performed in Moorestown, NJ, and Akron, OH through Oct 31/13. $6.9 million in FY 2012 Research, Development, Test and Evaluation funds will be used as incremental funding. The US Missile Defense Agency in Dahlgren, VA manages this contract (HQ0276-10-C-0003, PO 0032).

June 4/12: Aegis Ashore. URS Group, Inc. in San Antonio, TX wins a $129.5 million firm-fixed-price task order to build the Aegis Ashore test complexes in Moorestown, NJ and the Pacific Missile Range Facility at Barking Sands, Kauai, HI.

In Moorestown, they’ll build a radar deckhouse and support building, and do related work to test the government-furnished, government-installed MK41 missile launchers. The Pacific Missile Range facility involves full site construction of a radar deckhouse, support building, launch pad, electrical power, potable water, sewer connection, synthetic natural gas system, and communications systems, in addition to testing their success in integrating government-furnished, government-installed MK41 missile launchers. The task order also contains 1 unexercised option, which, if exercised, would increase cumulative task order value to $130 million.

Work will be performed in Kauai, HI (72%), and Moorestown, NJ (28%), and is expected to be complete by November 2013. Three proposals were received for this task order by the Naval Facilities Engineering Command in Pearl Harbor, Hawaii (N62742-09-D-1174, HC02). See also Aug 24/10 entry.

May 21/12: NATO ALTBMD. NATO leaders declared that the Alliance now has an interim ballistic missile defence capability, via a basic ALTBMD command and control system capability which has been tested and installed at Headquarters Allied Air Command in Ramstein, Germany.

At present, ALTBMD is just a C2 network. NATO members need to provide sensors and interceptors to connect to the system. Full Operational Capability isn’t expected until the end of the current decade, or the early 2020s. NATO.

ALTBMD interim capability

April 20/12: GAO report. The US GAO releases report #GAO-12-486, “Opportunity Exists to Strengthen Acquisitions by Reducing Concurrency.” The implications for missile defense belie the bland title:

“To meet the presidential 2002 direction to initially rapidly field and update missile defense capabilities as well as the 2009 announcement to deploy missile defenses in Europe, MDA has undertaken and continues to undertake highly concurrent acquisitions. Concurrency is broadly defined as the overlap between technology development and product development or between product development and production. While some concurrency is understandable, committing to product development before requirements are understood and technologies mature or committing to production and fielding before development is complete is a high-risk strategy that often results in performance shortfalls, unexpected cost increases, schedule delays, and test problems. It can also create pressure to keep producing to avoid work stoppages… During 2011, the Ground-based Midcourse Defense, the Aegis Standard Missile 3 Block IB, and the Terminal High Altitude Area Defense experienced significant ill effects from concurrency.

…Aegis Ashore began product development and set the acquisition baseline before completing the [Preliminary Design Review]. This sequencing increased technical risks and the possibility of cost growth… The program has initiated procurement of components for the installation and plans to start fabricating two enclosures called deckhouses – one for operational use at the Romanian Aegis Ashore installation and one for testing at the Pacific Missile Range Facility – in fiscal year 2012, but does not plan to conduct the first intercept test… until fiscal year 2014. Further, the program plans to build the operational deckhouse first, meaning any design modification identified through system testing… will need to be made on an existing deckhouse and equipment. As we have previously reported, such modifications on an existing fabrication may be costly.”

March 30/12: GAO Report. The US GAO tables its “Assessments of Selected Weapon Programs” for 2012. For Aegis Ashore, RDT&E costs have increased from $835.1 million in April 2010 to $1,418.6 million as of October 2011. The reconstitutable deckhouse design for the sites had not been included in its baseline, and the addition of hardware for a 3rd site in Poland also had to be paid for.

GAO sees concurrency risks from the program’s decision to begin system development before the preliminary design review, and from its plan to buy operational components before testing is done. the Navy defends their practice by saying that all of these systems are in advanced testing or deployed on Navy ships already. The program’s last milestone was a Critical Design Review in December 2011, and flight tests aren’t expected to begin before Q2 2014. The 1st “deckhouse” with radar, missiles, etc, is expected to be ready in December 2015, and the 2nd by December 2018. GAO:

“The SPY-1 radar requires modifications for its use on land and other changes may be necessary due to host nation radar frequency issues… In addition, the maturity of SM-3 Block IB may be overstated because some of its component technologies have not been flight tested or have experienced failures in testing. The multimission signal processor also faces development challenges, and the Defense Contract Management Agency has identified its schedule as high risk. We have previously reported that a significant percentage of its software still needs to be integrated.”

March 30/12: SAR. The Pentagon’s Selected Acquisitions Report ending Dec 31/11 includes elements of EPAA:

“Ballistic Missile Defense System (BMDS) – Program costs decreased $3,596.4 million (-3.1%) from $122,362.6 million to $118,766.2 million, due primarily to a reduction in the Theater High Altitude Area Defense (THAAD) missile production rate (-$1,247.2 million), the elimination of seven AN/TPY-2 radars (from 18 to 11) (-$1,237.2 million), and the placement of the Sea Based X-band (SBX) radar in limited test and contingency operation status (-$666.3 million). There were additional decreases for the reduction of three THAAD batteries (from 9 to 6) (-$540.8 million), reductions in Special Programs funding (-$408.2 million), a reduction of Aegis Standard Missile-3 Block IB missiles in FY 2013 (-$298.1 million), cancellation of the Airborne Infrared Program (-$239.3 million), and reductions in the Directed Energy Program (-$194.2 million). These decreases were partially offset by the application of revised escalation indices (+$684.8 million), increases to the Israeli Cooperative Program for FY 2011-2012 (+$217.8 million), increased construction estimates for Romania and Poland Aegis Ashore sites (+$213.0 million) [emphasis DID's], and increases for Iron Dome in FY 2011 (+$205.0 million).”

Program costs

March 29/12: Aegis Ashore. BAE U.S. Combat Systems in Minneapolis, MN receives a $23 million contract modification for MK 41 Vertical Launching System mechanical modules and related equipment and services for DDG 116 and Aegis Ashore, Host Nation One (Romania). Contract modification efforts includes requirements to procure MK41 VLS mechanical systems, production of support material, interim support parts, and equipment in support of DDG51-class new construction, and Aegis Ashore Missile Defense Systems requirements.

Work will be performed in Aberdeen, SD (43%); Farmingdale, NY (19%); Aiken, SC (15%); Fort Totten, ND (10%); York, PA (7%); Minneapolis, MN (5%); and Louisville, KY (1%). Work is expected to complete by September 2015. US Naval Sea Systems Command in Washington, DC manages the contract (N00024-11-C-5301).

March 28/12: Beyond Europe? Hurriyet Daily News reports that EPAA could soon have other regional counterparts:

“The US seeks to expand its missile systems to Asia and the Middle East by building regional shields against ballistic missiles, similar to the NATO shield already in Europe. A senior Pentagon official says the Obama administration will hold talks with South Korea, Japan, Australia and Gulf Cooperation Council countries.”

Feb 23/12: Aegis Ashore. Raytheon Integrated Defense Systems in Sudbury, MA receives a $106.5 million modification to previously awarded contract for the production of an AN/SPY-1D-V radar transmitter group for Aegis Ashore Missile Defense System Host Nation 1 (Romania), as well as 2 AN/SPY-1D-Vs and a MK 99 Mod 14 targeting illuminator to equip the future DDG 116 destroyer.

Work will be performed in Andover, MA (80%); Sudbury, MA (15%); and Portsmouth, RI (5%), and is expected to be complete by September 2017. US Naval Sea Systems Command in Washington, DC manages the contracts (N00024-09-C-5111).

Feb 18/12: Turkey(s). During meetings with NATO chief Anders Fogh Rasmussen, Turkish Foreign Minister Ahmet Davutoglu states the TPY-2 radar based at Diyarbakir (vid. Sept 3/11) must not have any of its data sets shared beyond NATO, with a specific reference to Israel. The radar is positioned in a way that makes it easy to see into Iran, for early detection of ballistic missile launches. Voice of America | UPI.

Feb 16/12: Phase 2 ships. The US Navy announces the 4 Arleigh Burke Class guided-missile destroyers which will be forward deployed to Rota, Spain in FY 2014 and 2015. See also DoD Buzz.

“The four include three from Norfolk, Va; USS Ross, USS Donald Cook, and USS Porter, and one from Mayport, Fla., USS Carney. The ships are in support of President Obama’s European Phased Adaptive Approach to enhance the security of the European region… Ross and Donald Cook will arrive in fiscal 2014 and Carney and Porter in fiscal 2015.”

Nov 1/11: Radars. The US Missile Defense Agency (MDA) awards Raytheon IDS of Woburn, MA a maximum $307.6 million indefinite-delivery/ indefinite-quantity (IDIQ) contract. Under this new contract, Raytheon will maintain software required to operate “the X-band family of radars,” and perform and Ballistic Missile Defense System test planning, execution and analysis. Discussions with Raytheon personnel confirmed that the funding applies to the XBR radar on the SBX naval platform, as well as their AN/TPY-2 radars (THAAD, EPAA, deployed in Israel & Japan), and a “Ground Based Radar Prototype” that they’re working on as a technology demonstrator.

Work will be performed in Woburn, MA from Nov 1/11 through Oct 31/13, and the MDA’s FY 2012 research, development, test and evaluation funds will be used to fund initial orders. The MDA at Redstone Arsenal, AL manages the contract (HQ0147-12-D-0005).

FY 2010 – 2011

Europe grapples with BMD; Czechs out, Turkey in; Aegis Ashore shifts the plan and the costs; Progress report.

(click to view full)

Sept 15/11: Progress report. The White House offers an update on progress made so far on its European missile defense plans. By Phase:

Phase 1: “In March of this year the USS Monterey [CG-61] was the first in a sustained rotation of ships to deploy to the Mediterranean Sea in support of EPAA. Phase One also calls for deploying a land-based early warning radar, which Turkey recently agreed to host as part of the NATO missile defense plan.”

Phase 2: “This week, on September 13, the United States and Romania signed the U.S.-Romanian Ballistic Missile Defense Agreement. Once ratified, it will allow the United States to build, maintain, and operate the land-based BMD site [and SM-3 deployment] in Romania.”

Phase 3: “Poland agreed to host the [SM-3] interceptor site in October 2009, and today, with the Polish ratification process complete, this agreement has entered into force.”

Russia: “As an initial step, NATO and Russia completed a joint ballistic missile threat assessment and agreed that the [NATO-Russia Council] would resume theater missile defense cooperation. The United States and Russia also continue to discuss missile defense cooperation through a number of high-level working groups at the State and Defense Departments.”

Sept 9/11: Aegis Ashore. The US Missile Defense Agency in Dahlgren, VA awards a $115.5 million sole source cost-plus-award-fee/ cost-plus-fixed-fee contract modification to Lockheed Martin MS2 in Moorestown, NJ, for continued Aegis Ashore Combat System adaptation efforts, site planning, transportation planning, technology initiatives and studies. This award of contract line item number (CLIN) 0001, and increase in the amounts for CLINs 0011 (material) and 0012 (travel), increases the total contract value to date from $61.2 million to $176.7 million.

Work will be performed in Moorestown, NJ, through Sept 30/12. FY 2011 research, development, test and evaluation funds will be used to incrementally fund this effort (HQ0276-10-C-0003, PO 0019).

Sept 2/11: Turkey in. Turkey has agreed to emplace an AN/TPY-2 early warning radar, facing Iran and linked to US Navy systems via Cooperative Engagement Capability. Turkish reports place it near Diyarbakir in SE Turkey, which also hosts Patriot missile batteries. Col. David Lapan tells Stars & Stripes that the agreement has some further required approvals to clear, but “The hope is to have it deployed by the end of this year.” Zaman Dis Haberler [in Turkish] | Missile Defense Advocacy Alliance | Stars & Stripes | Russia’s RIA Novosti.

Turkey

Aug 23/11: Phase 3. Raytheon Missile Systems Co. in Tucson, AZ receives a $9.8 million sole-source, cost-plus-award-fee contract modification. The CLIN 0008 option, “Future Upgrades and Engineering Support,” will help the Missile Defense Agency execute technical analysis for the Aegis BMD 5.1/SM-3 Block IIA combination, which is critical to PAA Phase 3. Exercising CLIN 0008 increases the total contract value from $276.7 – $286.5 million.

Work will be performed in Tucson, AZ through Sept 30/16, and will be incrementally funded by FY 2011 research, development, test, and evaluation funds. Though the SM-3 Block IIA is a cooperative program with Japan, this is not a foreign military sales acquisition. The US MDA in Dahlgren, VA manages the contract (HQ0276-10-C-0005, PO 0015).

July 6/11: DSB Report. In an open letter, the US Defense Science Board aims to dispel impressions that they recommended against the SM-3, which by its nature is a mid-course or terminal phase interceptor:

“The DSB concluded that the Missile Defense Agency is on the right track in developing European Phased Adapted Approach (EPAA) options, including continued evolution of the SM-3 family of missiles… The DSB also examined the potential in the EPAA context for EI [Early Intercept] in regional defense against short-range missiles before threat payloads could be deployed, and concluded that this was not a viable option because of technical constraints… The fact that this form of EI is not viable in shorter-range regional applications does not imply that either SM-3 family interceptors or the EPAA concept are flawed… MDA is on the right track in pursuing this capability for national missile defense, and examining the potential application in regional defense as a function of the range of threat missiles.”

June 23/11: CRS Report. The US Congressional Research Service releases the latest update of “Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress” [PDF]. Key excerpts:

“Some observers are concerned – particularly in light of the EPAA – that demands from U.S. regional military commanders for BMD-capable Aegis ships are growing faster than the number of BMD-capable Aegis ships. They are also concerned that demands from U.S. regional military commanders for… BMD operations could strain the Navy’s ability to provide regional military commanders with Aegis ships for performing non-BMD missions… MDA states that SM-3 Block IAs have a unit procurement cost of about $9 million to $10 million, that SM-3 Block IBs have an estimated unit procurement cost of about $12 million to $15 million, and that SM-3 Block IIAs have an estimated unit procurement cost of about $20 million to $24 million.”

June 15/11: The Czech Republic formally abandons its proposed role in the U.S. “Phased Adaptive Approach” to missile defense. Defense Minister Alexander Vondra told visiting Deputy Defense Secretary William Lynn that his country no longer wanted to participate in the American system, but would continue working within NATO on potential European defenses. Stars & Stripes.

Czech out

April 15/11: Test. Flight Test Standard Missile-15 (FTM-15) begins to test the European Phased Adaptive Approach architecture, firing an SM-3 Block 1A missile against an intermediate-range (officially, 1,864 – 3,418 miles) target, based on AN/TPY-2 ground-based radar data, before the USS O’Kane (DDG 77, equipped with AEGIS BMD 3.6.1) could pick the target up using its own radar. Initial indications are that all components performed as designed, and the missile recorded the 21st successful AEGIS BMD intercept in 25 tries.

The target missile was launched from the Reagan Test Site, located on Kwajalein Atoll in the Republic of the Marshall Islands, approximately 2,300 miles SW of Hawaii. The AN/TPY-2 radar, which is also used as part of the THAAD missile system, was located on Wake Island, and crewed by Soldiers from the 94th Army Air and Missile Defense Command. It detected and tracked the missile, then sent trajectory information to the 613th Air and Space Operations Center’s C2BMC(Command, Control, Battle Management, and Communications) system at Hickam Air Force Base, HI. That was relayed to USS O’Kane, sailing to the west of Hawaii, which launched the SM-3-1A missile about 11 minutes after target take-off. O’Kane’s own AN/SPY-1 radar eventually picked up the incoming missile itself, and controlled the missile until impact.

As an important sidebar, the 2 demonstration Space Tracking and Surveillance Satellites (STSS), launched by MDA in 2009, successfully acquired the target missile, providing stereo “birth to death” tracking of the target missile.

FTM-15 was less dramatic than the 2008 satellite kill using an SM-3, but it’s equally significant. The successful full integration of ground and naval defenses, remote launch, and supplementary satellite track confirmed that EPAA Phase I, which has already deployed, works. It did so even though launch on remote track was supposed to wait for AEGIS BMD 5.1, and IRBMs were supposed to wait for SM-3 Block II. Instead, the test also combined to extend the current system’s proven capabilities, while validating the difficult connections that make a missile defense system more than the sum of its parts, and proving out an important early warning element (STSS) in the system. US MDA | Lockheed Martin | Raytheon | Lexington Institute.

April 3-18/11: The Russian Question, Take 2. Russia’s NATO envoy Dmitry Rogozin describes the issue of NATO-Russian missile defense cooperation as “a complicated matter, but it is not hopeless.” Nonetheless, differences run very deep. Russian Foreign Minister Sergei Lavrov roiled the waters recently when he said that:

“We insist on only one thing: that we’re an equal part of [a joint missile defense arrangement]. In practical terms, that means our office will sit, for example, in Brussels and agrees on a red-button push to start an anti-missile, regardless of whether it starts from Poland, Russia or the U.K.”

It’s not 100% clear if he meant veto power over launches, though i

Show more