Boeing Delta IV Heavy
(click to view full)
The EELV program was designed to reduce the cost of government space launches through greater contractor competition, and modifiable rocket families whose system requirements emphasized simplicity, commonality, standardization, new applications of existing technology, streamlined manufacturing capabilities, and more efficient launch-site processing. Result: the Delta IV (Boeing) and Atlas V (Lockheed Martin) heavy rockets.
Paradoxically, that very program may have forced the October 2006 merger of Boeing & Lockheed Martin’s rocket divisions. Crosslink Magazine’s Winter 2004 article “EELV: The Next Stage of Space Launch” offers an excellent briefing that covers EELV’s program innovations and results, while a detailed National Taxpayer’s Union letter to Congress takes a much less positive view. This DID Spotlight article looks at the Delta IV and Atlas V rockets, emerging challengers like SpaceX and the new competition framework, and the US government contracts placed since the merger that formed the United Launch Alliance.
The EELV System
When comparing launch vehicles, note that Geostationary Transfer Orbit (GTO) between 1,240 – 22,240 miles above the Earth’s surface is preferred for high-end satellites. It’s much easier to lift objects into Low Earth-orbit (LEO), up to 1,240 miles above the Earth’s surface. On the other hand, your payload’s coverage will suffer, and its lifespan might as well.
A quick primer on reading EELV configurations is in order. “AF” is the US Air Force, while “NRO” is the USA’s National Reconnaissance Office. The numbers after the rocket type represent its payload cover (fairing) diameter, and the number of boosters attached to the core rocket.
For example, in the Atlas models, 501 means a 5m diameter fairing, 0 boosters, and everything always ends with a 1. If we strapped on 4 boosters, it would become an Atlas V 541.
For Boeing’s Delta rockets, the attributes are broken out more clearly: (4,2) means a 4m diameter fairing and 2 boosters. If we switched to a 5m fairing instead, it would become a Delta IV 5,2.
Delta IV
Delta rocket family
(click to view full)
The Delta IV’s history dates back to the late 1950s when the US government, responding to the Soviet Union’s launch of Sputnik in 1957, contracted for development of the Delta rocket. The first successful Delta launch was NASA’s Echo 1A satellite on Aug 12/60.
Over the years the Delta family of rockets has become larger, more advanced, and capable of carrying heavier satellites into orbit. Design changes included larger first-stage tanks, addition of strap-on solid rocket boosters, increased propellant capacity, an improved main engine, adoption of advanced electronics and guidance systems, and development of upper stage and satellite payload systems.
Following a 1989 contract from the US Air Force for 20 launch vehicles, the newer, more powerful Delta II version emerged. Then, in response to market needs for a larger rocket to launch commercial satellites, Delta III began development in 1995. Its first launch occurred in 1998 and its final launch in 2000, paving the way for the Delta IV.
The Delta IV offers customization options by adding booster rockets, including a Delta IV Heavy that uses 2 additional Common Booster Cores. The Delta IV Heavy has the highest payload rating to Geostationary Transfer Orbit of any American rocket, and also beats the Ariane 5 ECA. It’s expected to stay on top even after SpaceX launches its Falcon Heavy, though the Falcon Heavy will offer greater capacity to Low Earth Orbits.
Delta IV medium-to-heavy launch vehicles became operational in 2002. The first Delta IV launch, of Eutelsat’s W5 commercial satellite, took place on Nov 20/02. The first payload delivered for the EELV program was the DSCS A3 satellite, on March 10/03.
Atlas V
Atlas family
(click to view full)
Developed in the late 1950s as the USA’s first operational intercontinental ballistic missile, the Atlas launch vehicle went on to become the first commercial ride to space.
The 1990s opened a new chapter in Atlas history with the first commercial satellite launch. The growing demand for satellite entertainment presented new opportunities in the launch business. The Atlas I was developed to serve these needs and to continue the evolution of the Atlas vehicle.
Launched on Dec 7/91 with a Eutelsat satellite on-board, the first Atlas II ushered in a family of Atlas vehicles that would go on to launch many commercial payloads. The Atlas II family of launch vehicles was retired in 2004.
Developed as an evolutionary bridge, the Atlas III launch vehicle, like the I and II before it, debuted by delivering a commercial payload to orbit. First launched on May 24/00, the Atlas III family was retired in 2005. There was no Atlas IV.
The Atlas V launch vehicle comes in 400 and 500 series variants, and made its debut on Aug 21/02. It uses the Russian RD-180 rocket engine, which has become a problem as tensions between the USA and Russia have reignited. Like the Delta IV, each rocket can be customized by adding boosters, in order to launch heavier payloads. Atlas V can also rise from 1 to 2 Centaur second-stage engines, in the XX2 configuration.
The Atlas V has been used to launch several NASA missions, and a July 2011 agreement with NASA began the process of certifying the design for manned missions as well. ULA partnered with Blue Origin, Boeing, and Sierra Nevada Corp. for NASA’s Commercial Crew program, and Boeing was 1 of the 2 final winners, which helps to ensure additional orders down the road.
Military Satellite Payloads
AEHF concept
(click to view full)
A rocket’s key specifications involve how much it can lift to various orbits, and the US military pushed for the EELV program in part to expand that range. There’s controversy over the military’s success in meeting other goals, but lift and range have clearly improved.
EELV rockets are currently being used to launch satellites for a number of the major military satellite programs, including:
Advanced Extremely High Frequency (AEHF) communication satellites that will support twice as many tactical networks, while providing 10-12 times the capacity and 6 times higher data rate transfer than that of the current Milstar II satellites.
Wideband Global SATCOM satellites that will support the USA’s warfighting bandwidth requirements, supporting tactical C4ISR, battle management, and combat support needs.
Space Based Infrared System (SBIRS)-High satellites that will provide a key component of the USA’s future missile alert system, designed to give maximum warning and monitoring of ballistic missile launches anywhere in the world.
GPS IIF navigation satellites that are an upgrade of the original GPS, which is a worldwide timing and navigation system that utilizes a constellation of satellites positioned in orbit approximately 12,000 miles above the Earth’s surface. GPS-III will also launch using EELV rockets, instead of the Delta IIs.
EELV Budgets & Structure
Competition Again? The New “Open” Launch Framework
SpaceX Falcon
(click to view full)
Emerging competition from privately developed solutions like SpaceX’s Falcon-9 will give NASA and the US military additional options for all kinds of medium-heavy launch projects. EELV itself may even provide competition for NASA. The Delta IV has been considered as an alternative for a manned return to the moon, and a NASA-sponsored report concluded that using a modified Delta IV capable of human spaceflight could save billions of dollars, in place of NASA’s developmental Ares rocket. It would also provide a quickly-fielded solution to the expected gap in US space lift capabilities, now that the Space Shuttle program has ended.
As of July 2012, NASA and the Pentagon intend to pursue separate rocket buys, within a common framework. That framework is a huge departure from past practice, with big long-term implications for EELV.
In October 2011, NASA, the US National Reconnaissance Office (NRO) and the US Air Force announced a game-changing development: “certification of commercial providers of launch vehicles used for national security space and civil space missions.” In English: the market for national security launches just opened up beyond EELV, which will have to compete in some segments. That simple change incorporates 4 payload types (A-D), and 3 risk categories (1-3), where 3 is lowest risk. It’s both more, and less, than it seems.
For high-value “Class A, failure is not an option” long-lived national security satellites, whose added presence has a high marginal value to the existing constellation, EELV’s “Category 3” low-risk certified rockets will remain the only option. Barring a huge national emergency and Presidential orders, A1 or A2 combinations are impossible. At the other extreme, “Class D” payloads could fly on anything, even “Category 1” launch vehicles classified as high risk or unproven.
Once a new entrant demonstrates a successful launch of an EELV class medium-heavy launch system, the Air Force awards integration studies, and they can begin working toward EELV certification of specified systems and configurations. If no competitor has a certification rating that matches a competed launch, ULA gets a sole-source contract as a pre-priced option.
This framework will help NASA most, but each category now has a specific number of successful launches needed for eligibility, as well as a known set of technical, safety and test data needed to verify that record. Technically, competition exists now. In reality, it will take a while.
On the other hand, the new framework’s flexibility means that every successful launch by a non-EELV platform brings it closer to a new category, which will grant access to a forecastable set of new opportunities. That makes the investment payoff clear, and should spur a long-term sea change toward a number of qualified providers for many of the US government’s launch contracts. The big and obvious potential winner here in SpaceX (vid. May 23/11), whose Falcon 9 is poised to compete in the EELV’s segments once the certification paperwork is done on its 3 qualifying launches. Orbital’s Minotaur family may also benefit at some point.
Going Forward: Block Buys in a Broader EELV Program
Delta IV, waiting
(click to view full)
The US military made an EELV multi-year block buy of some kind part of its procurement strategy in November 2011, as an attempt to improve a shaky industrial base and drive costs down. Boeing and Lockheed Martin saw this as their opportunity to push a multi-year deal for 40 ULA rockets and launches from FY 2013 – 2017 inclusive. That would make it much more difficult for other private firms to secure launch orders, regardless of the certification framework, while EELV annual orders nearly doubled to over $2 billion per year.
Their lobbying ended up securing a 35-core block buy from FY 2013 – 2017, but their prices kept rising, and the contract’s exact terms are murky. Note, however, that cores =/= launches. The Pentagon’s FY14 plan involved 29 total launches from FY 2013 – 2017, vs. 45 booster cores. EELV launch services are usually ordered at least 24 months before a planned mission launch, so this multi-year buy actually covers US government missions into FY 2019.
FY 2015 – 2017 was supposed to see the beginnings of competition, with 14 “cores” (about 28%) supposedly open to competition, but there are reports of restrictions in the block buy agreement that essentially remove competition before 2018. Those allegations are now the foundation of a court case involving SpaceX and the USAF.
As of March 2014, SpaceX has completed the required number of successful Falcon 9 certification missions to begin competing for some national security launches. What they don’t have yet is certification, as government employees go over every aspect of their business. The USAF is working hard on this, but SpaceX’s Silicon Valley propensity to keep innovating adds to the challenge of certifying their configurations, even as it helps improve their costs and performance. Their entire approach is a major culture clash with the standard model for space access, explaining SpaceX’s 66%+ cost advantage and better pace of innovation, as well as their solid-but-not bulletproof reliability record. The long-term bet in this race is obvious. In the short-term, it’s a tougher call.
A March 2014 GAO report explained the USAF’s options, which became even more complex after Russia invaded Crimea, and the Atlas V’s dependence on Russian RD-180 engines became a glaring problem:
Contracts & Key Events
AEHF-2 launch
(click for video)
Military satellite launches will be covered in their respective satellite type’s articles. This section will generally be reserved for contracts, but significant military-related launches that are not covered elsewhere on DID may receive a pointer here. We’ll also cover EELV rocket-related issues that delay launches, but not external delays stemming from weather issues, ground equipment, etc.
FY 2016
Pentagon denies waiver allowing continued use of Russian RD-180 rockets
Launch, Deliver… Compete?
March 2/16: The USAF has awarded over $161 million in contracts to develop homegrown rocket-booster engines as part of the Evolved Expendable Launch Vehicle (EELV) program. The effort aims at ending reliance on Russian RD-180 engines for US space launches. Two contracts will see $115.3 go to Aerojet Rocketdyne to develop a prototype of its liquid oxygen/kerosene-fueled AR-1 booster engine while United Launch Alliance will receive $46.6 million for the purposes of developing prototypes of its Vulcan BE-4 booster stage engine, and its Advanced Cryogenic Evolved Stage (ACES), an upper-stage engine for the program.
October 12/15: The Pentagon has denied United Launch Alliance a waiver that would have allowed the company to continue using Russian RD-180 rockets. SpaceX was unhappy that the company’s competitor for defense and intelligence satellite launch services requested the waiver, with ULA previously threatening to withdraw from future competition with SpaceX if the waiver was denied. SpaceX was cleared for national security launches in May, with Congress passing the 2015 defense authorization law in December 2014 to curtail the use of the RD-180 by ULA, resulting in protests from some within the Pentagon earlier this year.
October 1/15: The Lockheed Martin-Boeing joint venture United Launch Alliance has been awarded a $882.1 million contract modification for continued services under the Evolved Expendable Launch Vehicle program. The company will continue to launch satellites for the Air Force with Atlas V and Delta IV rockets, with no details on the number of launches this modification covers. The $612 billion FY2016 NDAA bill released on Tuesday would allow ULA to use four more Russian-produced RD-180 engines in addition to the current five operated by the company; the firm had, however, argued that it requires fourteen engines.
FY 2014 – 2015
FY 2014 base and production contracts to ULA; GAO repport looks at USAF options; SAR report shows program costs down, but still $67.6 Bn; USAF reduces the number of competed launches; SpaceX meets cert. requirements, claims 75% savings are possible, launches lawsuit to force competition; Europe scrambles to compete with SpaceX; ULA also begins to move, hooking up with Bezos’ Blue Origin; Friction with Russia makes access to Atlas V’s RD-180 engines an issue.
June 4/15: The Air Force has released a RFP for its next generation of space launch engines, as it tries to move away from reliance on the Atlas-V’s Russian-produced RD-180 engines. Reports from March expected the RFP to have been released sooner, with industry being given tight deadlines in order to meet Congressional timelines. The Air Force aims to allocate $160 million, which will be distributed between four companies to produce prototypes for evaluation, with the Pentagon recently arguing for the continued use of the RD-180 as an interim measure before new engines can be introduced.
The Air Force is also reportedly investigating a possible leaking of information prior to the release of a RFP as part of the Evolved Expendable Launch Vehicle program, with this a potential violation of the Procurement Integrity Act. The first competition in over a decade within the EELV program is to launch next-generation GPS-III satellites, with the RFP being released on 14 May.
May 28/15: SpaceX has been cleared by the Air Force for national security-related launches, injecting competition into a previous United Launch Alliance monopoly on private DoD launches. This is part of Senate Armed Services Committee Chairman John McCain’s efforts to end US reliance on the Russia-manufactured RD-180 rocket for space launches. However, the Pentagon has previously urged Congress to allow ULA to continue using the Russian rockets in order to “ensure access to space”.
May 14/15: DefSec Carter and DNI Clapper have urged Congress to allow United Launch Alliance, a Lockheed Martin/Boeing joint venture, to use Russian RD-180 engines for “assured access to space.” If the current law were to change from the current 2015 defense authorization law banning the use of Russian engines in US launches, ULA would be capable of competing for 18 out of 34 competitive launches between 2015 and 2022, versus the current 5 as the law stands, with the Air Force pushing for more launches by the private sector.
Feb 26/15: The Air Force is looking nervously at its capacity to meet the congressionally-mandated deadline of 2019 to stop relying on Russian rocket engines. Air Force Secretary Deborah James told senators on Wednesday that to try to meet the deadline by 2019 would mean exchanging one monopoly franchise for another. Except, of course, it wouldn’t be controlled by Russia, a quality that of late has started to have more and more charm. It was an interesting remark given that the new monopoly in question might be that of SpaceX, the firm that has shown unprecedented speed to development. James indicated a decade was more realistic, which sounds more like the preferred timeframe of the Air Force’s long-time partner United Launch Alliance, which has a good record, but not one for sprightliness.
Feb 3/15: In addition to a new GPS III satellite procurement, the new Air Force budget would pay for five launches, two of which would be “set aside” for competition. This follows the very public recent settlement of a SpaceX protest that the Air Force had deliberately prevented competition when it awarded United Launch Alliance a bevy of launches over many years not long before SpaceX was expected to gain certification to compete. ULA uses Russian engines to loft satellites into orbit, and the new Air Force budget also has a line item to reduce reliance on Russian hardware, although the mechanism for doing so isn’t yet clear.
Jan 26/15: SpaceX has said it will call off the legal dogs on the Air Force. SpaceX sued after the Air Force bundled up a great number of future space launches and pre-contracted for the services without letting SpaceX bid. In an odd sort of settlement, SpaceX will drop its suit, and in return, the Air Force will add more launches that will not necessarily go to the Boeing-Lockheed-led United Launch Alliance consortium. When asked directly this morning an Air Force representative said that there was not a specific number of launches attached to that settlement. The Air Force has also agreed to work toward getting SpaceX certified for launches, although it is unclear if that last aspect is actually part of the settlement, as it is something that wouldn’t be properly withheld. When asked, the Air Force referred back to the single-paragraph statement. SpaceX CEO Elon Musk previously accused an Air Force official of seeking employment from the bidders during the process, an offer SpaceX had refused. That accusation made news at the time (May 2014) partly because of the significance of the contract size, but primarily because it is fairly rare for a contractor to speak of such alleged behavior publicly.
Sept 29/14: United Launch Services LLC in Littleton, CO receives a $127 million firm-fixed-price contract modification, exercising an option for 1 Air Force Atlas V 531 (5m fairing, 3 boosters), and the exercise of an option for backlog transportation. It’s a FY 2014 launch vehicle configuration, will all funds committed immediately using FY 2013 and 201 USAF missile budgets.
Work will be performed at Centennial, CO, and Cape Canaveral Air Force Station, FL, and is expected to be complete by Aug 15/15. USAF Space and Missile Systems, Los Angeles Air Force Base, CA manages the contract (FA8811-13-C-0003, PO 0055).
Extra Atlas V ordered
Sept 7/14: ULA & Blue Origin. United Launch Alliance partners with Amazon.com founder Jeff Bezos’ Blue Origin to jointly complete development of Blue Origin’s 550,000 pound thrust BE-4 LNG/LOx rocket engine, a fuel choice that helps reduce costs and complexity. The announcement hints at coming consolidation of ULA’s rocket lines.
The BE-4 has been under development at Blue Origin for the last 3 years, and the new joint agreement expects another 4 years of development, with full-scale testing in 2016 and a 1st flight in 2019. They won’t discuss the new engine’s costs, except to say that they expect it will cut costs for customers when 2 BE-4s are used to power ULA’s next-generation rocket. What the new engine won’t do, is fix the Atlas V’s reliance on a Russian engine. ULA’s FAQ says:
“The BE-4 is not a direct replacement for the RD-180 that powers ULA’s Atlas V rocket, however two BE-4s are expected to provide the engine thrust for the next generation ULA vehicles. The details related to ULA’s next generation vehicles – which will maintain the key heritage components of ULA’s Atlas and Delta rockets that provide world class mission assurance and reliability – will be announced at a later date.”
The BE-4 will be available to other customers beyond ULA, beginning with Blue Origin itself. If the new CEO (Aug 12/14) was looking to inject a bit of Silicon Valley’s DNA into ULA, in order to compete with SpaceX and lower costs, this is a good start. Sources: Blue Origin, “United Launch Alliance and Blue Origin Announce Partnership to Develop New American Rocket Engine” | ULA, “United Launch Alliance and Blue Origin Announce Partnership to Develop New American Rocket Engine” and FAQ | BE-4 Fact Sheet [PDF].
Sept 16/14: NASA CCiCap. NASA issues its main Commercial Crew Integrated Capability (CCiCap) contracts: up to $4.2 billion to Boeing, which will use the CST-100 on top of the Atlas V, and up to $2.6 billion to SpaceX, which will use its Dragon v2 on top of its own Falcon 9.
SpaceX isn’t certified yet, but by the time flights begin taking place, it will be. Which means that each NASA CCiCap mission will improve production volume, and hence likely prices. Read “NASA’s CCiCap: Can Space Taxis Help the Pentagon?” for full coverage.
NASA CCiCap
Sept 16/14: FY 2015 ELC. Sept 16/14: United Launch Services LLC in Littleton, CO receives a $938.4 million cost-plus-incentive-fee contract modification for FY 2015 EELV Delta IV and Atlas V launch capability. This contract covers mission assurance, program management, systems engineering, integration of the space vehicle with the launch vehicle, launch site and range operations, and launch infrastructure maintenance and sustainment. As one might guess, actual rockets and launches are separate. $231.8 million in FY 2015 USAF missile budgets is committed immediately.
Work will be performed at Littleton, CO; Vandenberg AFB, CA; and Cape Canaveral Air Station, FL, with an expected completion date of Sept 30/15. The USAF Launch Systems Directorate’s Space and Missile Systems Center at Los Angeles AFB, CA manages the contract (FA8811-13-C-0003, PO 0048).
FY 2015 base (ELC) award
Aug 12/14: ULA Leadership. ULA names Lockheed Martin’s VP and GM of Strategic and Missile Defense Systems, Tory Bruno, as its next President and CEO, effective immediately. He will replace Michael Gass, who has held these roles since ULA’s founding in 2006. Former Boeing executive Daniel Collins will remain COO.
In a separate statement, Gass said he had planned to retire “in the near term” but with “the changing industry landscape over the next several years, the Board of Directors and I have agreed that the immediate appointment of my successor to begin the leadership transition is in the best interest of the company.” Lockheed Martin Space Systems EVP and ULA Board member Rick Ambrose praised Gass’ launch record, and stated that:
“Tory is an ideal leader to take the reins at ULA. He’ll bring the same unwavering commitment to mission success that has been ULA’s hallmark, and will apply his proven track record of driving customer focus, innovation and affordability to shape ULA’s future.”
It would seem that ULA is beginning to take the prospect of competition with SpaceX et. al. seriously. Sources: ULA, “United Launch Alliance Names Tory Bruno President and Chief Executive Officer” | Space News, ” United Launch Alliance Taps a Lockheed Executive To Replace CEO Gass”.
Aug 4/14: SpaceX Infrastructure. SpaceX picks a site in Brownsville, TX as its private launch site, beating a location in Shiloh, FL just north of Cape Canaveral. They plan to stage up to 12 commercial launches a year from there, but the need to steer clear of populated areas forces them into a “keyhole” area between Florida and Cuba that restricts missions to equatorial orbits. “Dogleg” maneuvers could expand the range of orbit allowed, but there’s a performance cost. The good news for SpaceX, who wanted a range clear of NASA or USAF restrictions, is that 3 of 4 SpaceX launches from Cape Canaveral since December 2013 would fit Brownsville’s launch profile.
SpaceX plans to invest $85 million in the site, with another $15.3 million coming from the Texas state government: $2.3 million from the Texas Enterprise Fund (TEF), plus $13 million from the Spaceport Trust Fund to the Cameron County Spaceport Development Corp. FAA certification will be part of that development, and the Texas government has already made moves to support that. These Texas investments aren’t coming from out of the blue. SpaceX has operated a Rocket Development Facility in McGregor, TX since 2003. It now has over 250 employees, and a TexasOne visit to California in 2011 launched Texas’ bid for this project.
Government missions under contracts like EELV will still be launched from Cape Canaveral, as will some commercial missions. Sources: Governor of Texas, “Gov. Perry Announces State Incentives Bringing SpaceX Commercial Launch Facility, 300 Jobs to the Brownsville Area” | Florida Today, “Despite SpaceX plans, Nelson pushes for Brevard launches” | Space Politics, “As Texas celebrates winning SpaceX spaceport, Florida regroups”.
July 17/14: Political. The Senate Appropriations Committee approves a $489.6 billion base FY 2015 budget, plus $59.7 billion in supplemental funding. The issue of launch infrastructure, which is currently an almost $1 billion per year award to ULA, gets a small but interesting twist:
“The Committee believes additional competition can be achieved by creating new opportunities within the United States launch infrastructure, including commercial and State-owned launch facilities. Increasing the capability and number of launch facilities helps to ensure our Nation’s ability to launch priority space assets. Therefore, to promote competition at launch facilities, $7,000,000 is provided to spaceports or launch and range complexes that are commercially licensed by the Federal Aviation Administration and receive funding from the local or State government. These funds shall be used to develop the capacity to provide mid-to-low inclination orbits or polar-to-high inclination orbits in support of the national security space program.”
At the same time, however, the SAC directs the USAF to dispose of DSP-20, rather than storing a $500 million satellite for $425 million until its planned 2020 launch. It also votes to add $125 million for a competed EELV launch order in FY 2015, which could help the USAF kill 2 problems with one launch (q.v. July 10-15/14). Note that the FY 2015 budget still has to be voted on in the whole Senate, then reconciled in committee with the House of Representatives’ defense budget, then signed into law by the President. There is no guarantee that this provision will survive. Sources: US Senate Committee on Appropriations, “Committee Approves FY 2015 Department of Defense Appropriations Bill – Report: Department of Defense”.
July 16/14: Disclosure. The Senate Committee on Commerce, Science, and Transportation, and the Senate Committee on Armed Services’ Subcommittee on Strategic Forces hold a joint hearing titled, “Options for Assuring Domestic Space Access.” There’s a lot of back-and-forth on a number of issues, including requests from representatives in ULA strongholds of Alabama and Colorado:
“In the interest of full disclosure and accountability to the American taxpayer, we request that NASA publicly release all anomalies and mishap information, un-redacted, so that Congress can gain a better understanding of what has occurred and ensure full transparency”…. They also ask for information “on the various aspects of risk and reliability with these programs” and the agency’s “understanding of the specific technical issues, failures and resulting consequences for ISS.”
That’s trickier than it seems. Export control restriction may prevent unredacted reports, Elon Musk says that no government funding was used to develop Falcon 9, and the SpaceX contracts were carefully set out for cargo services rather than launch vehicles. See also: Space Politics, “House members press NASA for information on “epidemic of anomalies” with SpaceX missions” and “Senators debate RD-180 replacement, EELV competition”.
July 10-15/14: DSP-20 to compete. The USAF got some pushback about the ULA block buy at the House Armed Services Committee hearings on July 10th. USAF Secretary Deborah Lee James is telling reporters that they’re looking to reprogram $100 million, and move the DMSP-20 weather satellite launch into FY 2015 as a competed contract. That would raise the number of purchased FY 2015 launches to 6, but the amount committed strongly suggests that SpaceX would win the deal. Sources: DID, “FY15 US Defense Budget Finally Complete with War Funding” | DoD Buzz, “Air Force Seeks $100 Million for Rocket Rivalry” | Space Politics, “DOD official defends EELV block buy, endorses launch competition”.
July 15/14: SpaceX. USAF Space Command’s Space and Missile Systems Center has declared that SpaceX’s Dec 3/13 and Jan 6/14 flights qualify toward EELV certification, completing the Falcon 9 v1.1’s 3-flight requirement. The rocket must still pass a number of technical reviews, audits and independent verification and validation of the launch vehicle, ground systems, and manufacturing processes before EELV certification is complete. Sources: USAF, “SpaceX Falcon 9 v1.1 Flights Deemed Successful”.
July 10/14: Competition. The ripples of competition are extending beyond the USA. Europe, at least, is taking the competition extremely seriously:
“In June, it became obvious that Europe has made a major collective error, underestimating SpaceX’s capability to successfully market commercial launches at a fraction of Ariane’s costs. Today everyone is trying hard to maximize the impact of an Airbus Group-Safran initiative to form a joint venture and take control of the Ariane program. Jointly, the two groups own two-thirds of the heavy-lift booster and this is most probably just the beginning of a far-reaching consolidation strategy…. In other words, Ariane, despite an excellent reliability record, suddenly appears too complex and far too expensive…. In June, Genevieve Fioraso, the French minister in charge of space, candidly admitted the looming U.S. competition had been underestimated…. Now will come technical disagreements, such as solid propulsion versus liquid fuel…. the upgraded 5ME derivative and the envisioned next-generation Ariane 6. Divergent views on technicalities are expected to make discussions difficult…. The wake-up call is salutary, but devastating.”
They probably underestimated the threat because they focused on the American competitor most like themselves, believing that there wasn’t really any other way to perform this role. There’s a lesson for the whole industry there. Sources: Aviation Week, “Opinion: Arianespace Facing Shake-Up To Compete With SpaceX”.
July 4/14: ULA. ULA is the top aerospace company in Denver, so the locals are understandably concerned about the firm’s viability in light of competition from SpaceX, and a potential squeeze from Russian rocket engines. So, how is ULA reacting? By focusing on their reliability record, and ability at the top-end geosynchronous delivery missions:
“Michael Gass, CEO of ULA [says]…. ULA’s best strategy to keep winning business is to remain the most advanced and reliable rocket-launch company in the world…. “If a new entrant only wants to do a few of the missions and only has capability to cherry-pick a few, that’s not fair and level competition,” Gass said.”
USAF Space Command head Gen. William Shelton has his own take:
“Generally, the person you want to do business with you don’t sue…. Show me an interplanetary mission from NASA that’s contracted with SpaceX – that’s not what they’ve contracted,” he said. “Basically they’ve contracted commercial resupply with SpaceX. It is not putting my most precious assets on top of that rocket and launching it.”
Valid points. The downside of this approach for ULA is that a disruptive innovator who eventually hits a similar effectiveness level will destroy a “business as usual” incumbent. If Falcon Heavy succeeds, ULA will have a serious problem. Sources: Upstart Business Journal (Denver), “Rocket war involving SpaceX upends the space-launch business”.
June 3-5/14: New engine? Aviation Week quotes Gencorp President & CEO Scott Seymour, who says that their Aerojet Rocketdyne subsidiary has spent roughly $300 million working on technologies that will feed into a new AR-1 liquid oxygen/ kerosene booster engine with 500,000+ pounds of thrust, to replace Russia’s RD-180. Hoped-for costs would be about $25 million per pair. He also estimated that finishing development would take about 4 years and cost $800 million – $1 billion.
Gencorp hopes to recoup their investment by getting government funding for the remaining development work, and by fostering AR-1 use on multiple platforms. Their targets include the ULA’s Atlas V, Orbital’s Antares, “and, possibly, Space Exploration Technology’s Falcon 9 v1.1.” SpaceX uses a vertical integration philosophy, so they’d be a very tough sell. On the other hand, the Merlin engines used by SpaceX aren’t seen as an ideal solution for boosts to geosynchronous transfer orbit, and they don’t provide a high-energy upper stage. SpaceX has managed GTO launches, and they will need to prove the doubters wrong re: capacity at higher orbits with the forthcoming Falcon Heavy, which requires 27 of their Merlin 1D engines.
Meanwhile, if the government wants a new engine, why not compete the development phase? Sources: Aviation Week, “Aerojet Rocketdyne Targets $25 Million Per Pair For AR-1 Engines” | Lexington Institute, “Aerojet Rocketdyne Lays Down Challenge To Russian Rocket Engine Monopoly”.
June 2/14: ULA’s argument. The Lexington Institute, which counts Boeing and Lockheed Martin as funders, makes the case for the ULA block buy. Loren Thompson elides the issue of the latest block-buy agreement removing announced competition, which is a huge hole in his argument, but it isn’t one he can address without inside information. Beyond that, he does make some valid points:
“The Air Force says it has dedicated $60 million and 100 personnel to getting all the steps accomplished expeditiously…. [EELV hasn’t] had an unsuccessful mission in 70 attempts, whereas SpaceX has seen several failures in less than a dozen launches. During the Obama Administration, the launch alliance has met its schedule objectives for when launches occur 87% of the time, while the corresponding figure for SpaceX is 29%…. the Falcon 9 rockets that SpaceX currently uses as its main launch vehicle are severely limited in terms of what kinds of payloads they can loft into which orbits….[and are] also hobbled by the lack of a high-energy upper stage…. According to [HASC Chair Mike] Rogers, various SpaceX missions have delivered a satellite into a suboptimal orbit, experienced multiple spacecraft thruster failures, or failed to successfully achieve a planned second-stage relight…. SpaceX has sought to correct all of the glitches it encountered….. [but] when a company keeps altering the configuration of its launch vehicles… it becomes unclear as to precisely what is being certified.”
Sources: Forbes Magazine, “SpaceX Versus The Air Force: The Other Side Of The Story”.
May 23/14: New engine? The Senate Armed Services Committee inserts an initial $100 million in funding into the FY 2015 defense bill, in order to begin developing an American rocket engine that can replace the oxygen-rich, staged combustion performance of the Russian RD-180. Sources: Gizmodo, “A Senate Panel Just Set Aside $100 Million To Build a Putin-Free Rocket” | Phys Org, “US Senate panel budgets $100 mn for non-Russian rocket”.
May 22/14: Twitter Accusation. Elon Musk’s Twitter account fires a shot at former USAF PEO Space launch Scott Correll, who negotiated ULA’s block contract and is now at Aerojet-Rocketdyne as VP Government Acquisition and Policy:
“Air Force official awards $10B+ contract uncompeted & then takes lucrative job w funds recipient [DID: link]”
“V likely AF official Correll was told by ULA/Rocketdyne that a rich VP job was his if he gave them a sole source contract”
“Reason I believe this is likely is that Correll first tried to work at SpaceX, but we turned him down. Our competitor, it seems, did not.”
“Either way, this case certainly deserves close examination by the DoD Inspector General per @SenJohnMcCain’s request [DID: link]”
SpaceX had made the point in a less directly accusatory way as item 106 in its original legal brief, but retreated even further to an arm’s length statement in their amended legal filing of May 19th (q.v. May 19/14), citing the same National Legal and Policy Center NGO article noted in Musk’s Tweet. Musk’s Twitter volley more then negates any defensive legal benefits of that soft-pedaling. It’s an extremely serious accusation – people have gone to jail for this, which is why Correll’s hiring about a year after the contract’s signing was cleared through the USAF General Counsel.
It’s also logically obvious that trying to work at SpaceX after awarding the block-buy would destroy the idea that the ULA contract was a quid pro quo. Legally, SpaceX had better have some proof that Correll solicited a job with them before he left the USAF, or there’s probably a defamation suit in Musk’s future. One wonders if triggering a defamation suit is the point here, given the additional opportunities it would give SpaceX for legal discovery procedures. Sources: elonmusk@Twitter, Tweet 1 | Tweet 2 | Tweet 3 | Tweet 4 || | Business Insider, “SpaceX’s Dispute With The Air Force Just Got Even Uglier” and “Elon Musk Isn’t Backing Off Some Of His Most Serious Accusations Against The Air Force” | Spaceflight Insider, “Elon Musk suggests former USAF officer got Aerojet Rocketdyne position for sole source contract with ULA.”
May 21/14: Mitchell Report. SpaceNews obtains a summary of the Aerospace Corp. report authored by USAF Maj. Gen. Mitch Mitchell (ret.), and describes scenarios ranging from 9 missions/ 2 years avg. delay/ $2.5 billion cost to 31 missions/ 3.5 years avg./ $5 billion:
“…a bleak outlook for the American launch landscape without the RD-180 engine…. losing the RD-180… would delay as many as 31 missions, costing the United States as much as $5 billion…. The report says 38 Atlas 5 missions are on the manifest, but United Launch Alliance and RD-Amross have only 16 RD-180 engines on hand. That number is expected to shrink to 15 on May 22 with the launch of a National Reconnaissance mission.”
Sources: Space News, “Losing Access to RD-180 Engine Would Prove Costly, Pentagon Panel Warns”.
May 19/14: SpaceX suit. SpaceX amends its original suit in Federal District Court. The overall suit sets out their core rationale. SpaceX claims that the USAF changed the rules for eligibility mid-stride, bent its own rules to remove planned competitive launches, locked in a contract with secret terms that further restrict competition, and will cost the USA more than $6 billion over just 3 years. Read “Sued from Orbit: SpaceX and the EELV Contract” for full coverage.
May 13/14: Russian block? Russian Deputy PM Dmitry Rogozin unleases his Twitter diplomatic notes of Doom (SM) once more:
“Russia is ready to continue deliveries of RD-180 engines to the US only under the guarantee that they won’t be used in the interests of the Pentagon.”
That choice of words rules out fears that Russia would stop delivering US astronauts to the International Space Station, but a subsequent tweet says that will also end after the agreement expires in 2020. A release from ULA says this is all SpaceX’s fault, adding that a 2-year inventory of RD-180 engines (see also May 21/14 entry) should help cushion the blow:
“United Launch Alliance (ULA) and our NPO Energomash supplier in Russia are not aware of any restrictions…. We are hopeful that our two nations will engage in productive conversations over the coming months that will resolve the matter quickly…. [but we] have always prepared contingency plans in the event of a supply disruption…. We also maintain a two-year inventory of engines to enable a smooth transition to our other rocket, Delta, which has all U.S.-produced rocket engines.”
Sources: Twitter @DRogozin, re: RD-180s and re: ISS | ULA, “ULA Statement Regarding Reports of Russian Engine Restrictions” | Washington Post, “Feud between SpaceX and ULA over space contract grows more intense”.
April 25-29/14: SpaceX sues. SpaceX files a formal legal challenge to the USAF’s long-term, sole-source, 36-core EELV contract with ULA (q.v. Dec 16/13). Their release says that EELV is 58.4% above initially estimated costs on each launch, and estimate cost savings of 75% from each SpaceX launch. More to the point, however, they allege that the block-buy deal, which has not been made public, contained clauses that negated the government’s promise of open competition before 2018.
The SpaceX releases also cite The Atlas V’s Russian RD-180 engine, produced by state-owned NPO Energomash, which is overseen by Deputy Prime Minister of Russia in charge of defense industry Dmitry Rogozin. Rogozin is best known to the world as the guy who mocks other world leaders on Twitter when they criticize his government, and he had personal sanctions placed on him by the US government in March 2014. Read “Sued from Orbit: SpaceX and the EELV Contract” for full coverage.
SpaceX sues for competition
April 25/14: Politics. Concurrent with the lawsuit filed by SpaceX, Sen. McCain [R-AZ] is taking actions of his own:
“The first letter is to Secretary of the Air Force Deborah Lee James requesting additional information about her recent testimony regarding the EELV program before the Senate Armed Services Committee on April 10, 2014, and conveying concern about the apparently incomplete and incorrect nature [DID: emphasis ours] of some of that testimony. The second letter is to the Department of Defense Inspector General Jon T. Rymer requesting that his office investigate recent developments regarding the EELV program.”
Sources: Sen. McCain’s office, “Senator Mccain Seeks Information On Air Force’s Evolved Expendable Launch Vehicle (Eelv) Program”.
April 17/14: SAR. The Pentagon finally releases its Dec 31/13 Selected Acquisitions Report [PDF]. The EELV is mentioned, due to significant cost changes:
“Program costs decreased $3,062.7 million (-4.3%) from $70,685.1 million to $67,622.4 million, due primarily to savings realized in the negotiation and award of the new 2013-2017 Phase 1 contract (-$3,770.7 million), revised cost assumptions based on the negotiated contract (-$1,511.5 million), and net decreases from a change in launch vehicle configuration requirements (-$411.3 million). These decreases were partially offset by a quantity increase of 11 launch services from 151 to 162 (+$2,505.0 million).
With that said, it’s worth asking just how much can be saved by opening the process fully to competition (q.v. March 5/14). SpaceX hasn’t been formally certified yet, and it will be interesting to see what changes once that happens.
Cost Reduction
March 12/14: GAO Report. GAO releases GAO-14-382T, “Acquisition Management Continues to Improve but Challenges Persist for Current and Future Programs.” Regarding EELV:
“In December 2013, DOD signed a contract modification with ULA to purchase 35 launch vehicle booster cores over a 5-year period, 2013- 2017, and the associated capability to launch them. According to the Air Force, this contracting strategy saved $4.4 billion over the predicted program cost in the fiscal year 2012 budget [DID: but see March 5/14 entry].
….DOD expects to issue a draft request for proposal for the first of the competitive missions, where the method for evaluating and comparing proposals will be explained, in the spring of 2014…. The planned competition for launch services may have helped DOD negotiate the lower prices it achieved in its December 2013 contract modification, and DOD could see further savings if a robust domestic launch market materializes. DOD noted in its 2014 President’s Budget submission for EELV that after the current contract with ULA has ended, it plans to have a full and open competition for national security space launches. Cost savings on launches, as long as they do not come with a reduction in mission successes, would greatly benefit DOD, and allow the department to put funding previously needed for launches into programs in the development phases to ensure they are adequately resourced.”
March 4-11/14: FY15 Budget. The US military slowly files its budget documents, detailing planned spending from FY 2014 – 2019. In the EELV’s detailed budget briefings, which are split between ELC launch capability and ELV launch vehicles, the USAF has this to say about ongoing competition:
“The number of competitive launch opportunities from FY15-17 changed from 14 to 7 due to launch manifest changes. If competition is not viable at the time of need, missions will be awarded to the incumbent. The Air Force plans to compete all launch service procurements beginning in FY18, if there is more than one certified provider.”
EELV Hearings
March 5/14: Politics. SpaceX CEO Elon Musk is one of several individuals giving testimony to the Senate Committee on Appropriations’ Defense Subcommittee. It’s a wide-ranging hearing, covering the realities of planning and running national security launches, the ELS infrastructure contract’s rationale as national security emergency launch insurance, the prospect of creating segmented monopolies, etc. Musk’s basic message is that once competition is possible, every launch should be competed on a firm fixed-price basis, and ULA’s $1 billion per year subsidy should be removed. His firm isn’t certified for national security launches yet, but he hopes that a very involved and intrusive process involving over 300 government officials will be done by year-end. Key excerpts:
“I commend the United Launch Alliance (ULA) on its launch successes to date. However, year after year, ULA has increased its prices…. In FY13 the Air Force paid on average in excess of $380 million for each national security launch, while subsidizing ULA’s fixed costs to the tune of more than $1 billion per year…. By contrast, SpaceX’s Falcon 9 price for an EELV mission is well under $100M… and SpaceX seeks no subsidies…. had SpaceX been awarded the missions ULA received under its recent non-competed 36 core block buy, we would have saved the taxpayer $11.6 billion…. now we have serious concerns that it may not be the case that 5 missions [planned outside the block buy] will be openly competed [in FY15]…. To be clear, every mission capable of being launched by qualified new entrants should be competed this year and every year moving forward…. Consistent with federal procurement regulations and DOD acquisition directives, when a competitive environment exists, the Government should utilize firm, fixed-price, FAR Part 12 contracts that properly incent contractors to deliver on-time and on-budget. That also means eliminating $1 billion subsidies to the incumbent, as those subsidies create an extremely unequal playing field.”
Air Force data that wasn’t public until the GAO’s report yesterday (q.v. March 4/14) show $2.247 billion in FY13 funding for 11 launches from all EELV customers, which works out to $204 million per launch. The comparison may not be exact – either way, ULA’s problem is that they’re unlikely to be able to compete with SpaceX on a level playing field, now that SpaceX has refined rockets whose significantly lower costs are a product of hardware research & design. The GAO has explained (q.v. March 4/14) why pure fixed-price competition is best for SpaceX, but the implications go farther. ULA’s problem isn’t just competitive, it’s existential. Firm-fixed price competition for every launch, under a structure that eliminated byzantine cost-reporting systems, could turn ULA into a sharply-downsized bit player very quickly.
To survive, ULA has 3 options: (1) Hope that lobbying funds can deliver them contracts by skewing competitive structures, and limiting competition, regardless of costs to the government, even as military budgets shrink; (2) De