2013-07-09



UCAS-D/ N-UCAS concept
(click to view full)

The idea of UAVs with full stealth and combat capabilities has come a long way, quickly. Air forces around the world are pursuing R&D programs, but in the USA, progress is being led by the US Navy.

Their interest is well-founded. A May 2007 non-partisan report discussed the lengthening reach of ship-killers. Meanwhile, the US Navy’s carrier fleet sees its strike range shrinking to 1950s distances, and prepares for a future with fewer carrier air wings than operational carriers. Could UCAV/UCAS vehicles with longer ranges, and indefinite flight time limits via aerial refueling, solve these problems? Some people in the Navy seem to think that they might. Hence UCAS-D/ N-UCAS, which received a major push in the FY 2010 defense review. Now, Northrop Grumman is improving its X-47 UCAS-D under contract, even as emerging privately-developed options expand the Navy’s future choices as it works on its new RFP.

N-UCAS: Programs & Potential



X-47B concept
(click to view full)

In early 2006 the future of DARPA’s J-UCAS program seemed uncertain. It aimed to create Unmanned Combat Aerial Vehicles (UCAV) for the USAF and Navy that could approach the capabilities of an F-117 stealth fighter. Boeing’s X-45C was set to face off against Northrop Grumman’s X-47B Pegasus, the program had demonstrated successful tests that included dropping bombs, and aerial refueling tests were envisioned. J-UCAS was eventually canceled when the services failed to take it up, but the technologies have survived, and the US Navy remained interested.

N-UCAS (Naval Unmanned Combat Air System) is the US Navy’s broader umbrella initiative to define/develop/produce a fleet of unmanned, carrier based strike and surveillance aircraft. The UCAS-D demonstration program is a subset of that initiative. If the demonstrations go well, the Navy may progress to an Unmanned Carrier-Launched Airborne Surveillance and Strike (UCLASS) program.

In July 2007, Northrop Grumman’s X-47B Pegasus beat Boeing’s X-45C to win the UCAS-D development contract. Northrop Grumman’s Aug 3/07 release describes their mission as:

“The UCAS-D effort will mature critical technologies, reduce unmanned air system carrier integration risks and provide information necessary to support a potential follow-on acquisition milestone.”

Translation: show us that this can work, and demonstrate carrier-based launches and recoveries of a tailless, autonomous, “LO-relevant” aircraft. “Low Observable relevant” means that its outer shape must reflect stealth requirements, but without any of the operational stealth coatings and other expensive measures. That makes sense, since UCAS-D is only about aerodynamics and control. Eventually, follow on programs like N-UCAS will have to test stealth as well, but UCAS-D will be about the basics.

Right now, there are 2 big technical challenges for UCAS-D. One is safe, reliable flight and landings in carrier-controlled airspace, for a stealth aircraft that may not always be visible on radar. The other big challenge is successful and safe aerial refueling.

Like the F-117, a UCAV’s self-defense would involve remaining undetected. While UCAVs can theoretically be built to execute maneuvers no human pilot could handle, the pilot’s awareness of surrounding events would be quite limited. The X-47B isn’t being designed to do what the type inherently does poorly, but to do what the type does inherently well: be stealthier than manned aircraft, and fly reliably on station for days using aerial refueling support.

If Northrop Grumman or emerging competitors can overcome those challenges, and if UCAV reliability lets them match the 2-3 day long mission profiles of Northrop Grumman’s RQ-4 Global Hawks, the US Navy would receive the equivalent of a carrier-borne F-117 stealth fighter, with improved stealth and no pilot fatigue limits. That would open up entirely new possibilities for American carriers.

If aerial refueling support is present behind the front lines, an N-UCAS wing could easily sally forth to hit targets thousands miles from their host carrier, while pilots inside the ship fly in shifts. The X-47s would fly a much shorter distance back to aerial tankers as needed, and only return to the steaming carrier several days later, or when their weapons had been used up. As a concrete example, in an emergency a carrier could launch UCAVs as it left Gibraltar at the gate of the Mediterranean, then fly them to the Persian Gulf and keep them on patrol using USAF aerial refueling tankers, all the while steaming to catch up. As the carrier got closer to the Arabian Sea off of Oman, the UCAVs would get more and more loiter time over their target area, and the “chainsaw” would get shorter and shorter.

Next Step: UCLASS



Concept no more
(click to view full)

The USA’s Naval Aviation Master Plan currently includes provisions for a Navy UCAS (N-UCAS) around 2025. If UCAS-D work goes very well, and the US Navy follows through on its shift toward an X-47B-class UCAV that can be used for limited missions, pressure will build for much earlier deployment. There are already indications of pressure along those lines, and the UCLASS RFI sets a goal of fielding a limited capability UCAV on board American carriers by 2018 or so. Barring continued and substantial pressure from above, however, the level of cultural shift required by the naval aviation community is likely to slow down any deployment of advanced UCAVs on board ships.

If and when the US Navy proceeds with a full Unmanned Combat Air Vehicle deployment program, the X-47 will have competitors.

Predator C
click for video

General Atomics was first out of the gate, expanding its jet-powered Predator C “Avenger” research program to include a carrier-capable “Sea Avenger” as well.

Boeing is another clear competitor, who makes F/A-18 Super Hornet naval fighters, and has the privately-developed X-45 Phantom Ray. The Phantom Ray was developed under the earlier DARPA J-UCAS effort, and Boeing joins Northrop Grumman, General Atomics, and Lockheed Martin as recipients of the Navy’s next-stage UCLASS study contracts.

Lockheed UCLASS
click for video

Lockheed Martin’s concept comes out of their famed Skunk Works facility, and builds on internal efforts like Polecat and classified programs like the RQ-170. They also seem to be making a push to leverage their strength in back-end command and control systems as a selling point, while partnering with control system specialist DreamHammer.

Beyond Boeing, Britain’s BAE Taranis and Europe’s Dassault-led nEUROn program have excluded carrier operations from their programs, but France has a full-size aircraft carrier, and Britain expects to join her by 2020. Once the initial demonstration phases are done, European work on carrier-related UCAV R&D becomes a distinct possibility.

Northrop Grumman’s UCAS-D team hopes that by completing the UCAS-D funded demonstration phase, they’ll be able to offer an inherently conservative service a proven UCAV option, with a more complete set of advanced capabilities than privately-developed or late-moving competitors.

UCAS-D: Program & Team

The first X-47B Pegasus UCAS-D (AV-1) was scheduled to fly in December 2009, but that was pushed back to Q1 of CY 2010, and finally ended up taking place in February 2011. It conducted series of detailed flight envelope and land-based carrier integration and qualification events at Edwards AFB, CA, then returned to NAS Patuxent River, MD to begin land-based carrier landing trials.

AV-2, which is equipped with full refueling systems, was expected to make its first flight in November 2010, and begin testing autonomous aerial refueling (AAR). Early 2011 saw the AV-2 airframe pass static and dynamic load tests, but AV-2′s flights were delayed until AV-1 finishes its own tests, in late 2011, and didn’t take off until November 2011. It began carrier-related testing in 2012, and launched for the 1st time in May 2013. Full launch and landing circuits, and aerial refueling tests, are still on the horizon.

Its first landing was initially set for late 2011, but the firm now talks about some time in 2013. Once autonomous aerial refueling demonstrations begin, the Navy intends to achieve both probe & drogue (USN style) and boom/receptacle (USAF style) refuelings.

Northrop Grumman’s facility in Palmdale, CA is the final assembly site for the X-47B, and the industrial team also includes:

UCAS-D: Northrop Grumman’s X-47B

X-47B 3-view
(click to view full)

UCAVs currently have no real situational awareness of the airspace around them, which makes them sitting ducks for any attack that doesn’t use radar guidance, and isn’t picked up by their radar warning receivers. Even an alerted UCAV currently has few options but to try and change course. That may work against ground threats, but mobile aerial opponents will simply follow and kill them. Their best defense is not to be found. Their best option if found is to make it hard to keep a radar track on them, or to vector in enemy aircraft. This may be why high-end strike UCAVs like the Boeing X-45 Phantom Ray, European nEUROn, British Taranis, and Russian MiG SKAT all use the maximum stealth configuration of tailless subsonic blended wing bodies with shielded air intakes, and attenuated exhausts.

The X-47B’s modified flying wing design and top-mounted air intake reflect this orientation. By removing the pilot and opting for sub-sonic speeds, Northrop Grumman is able to field a design that looks like a more advanced version of its B-2 bomber. Instead of a straight flying wing like Boeing’s competing X-45C, however, their engineers opted for a cranked wing that improves landing characteristics on carrier decks, and makes its easy to use carrier-borne aircrafts’ classic “folding wing” design for improved storage in tight spaces.

This UCAV may be a short plane, but it’s not a small one. The X-47B’s 62.1 foot wingspan rivals the Navy’s old F-14s, and is wider than a Navy F/A-18 Hornet or even a larger Super Hornet. Because of its foreshortened length, however, its storage “spot factor” relative to an F/A-18C Hornet (“1.0″) is just 0.87.

Target and strike
(click to view full)

Pratt & Whitney Canada JT15D-5C turbofan engine powered previous X-47 models, but the UCAS-D will adopt Pratt & Whitney’s F100-PW-220U, a modified variant of the engine that powers American F-16 and F-15 fighters. Subsonic requirements and carrier-based employment changed the engine’s imperatives: it will produce less thrust than its F100 counterparts (just 16,000 pounds), in exchange for efficiency improvements and better protection against the corrosive salt-water environment.

Efficiency matters to this platform. Unrefueled X-47B range is expected to be between 1,500 – 2,100 nautical miles, with a maximum payload of 4,500 pounds. The standard payload is expected to be a pair of 2,000 pound JDAMs, but the weapon bay’s ultimate size and shape will determine its ability to carry other options like strike missiles, JSOW glide bombs, a pair of 4-bomb racks for the GPS-guided Small Diameter Bomb, the forthcoming Joint Air-Ground Missile, etc.

Sensors are currently to be determined, as they aren’t really the point of UCAS-D. Any Navy strike platform is expected to have an advanced SAR radar with Ground Moving Target Indicator (SAR/GMTI), conformal electro-optic day/night cameras, and ESM (Electronic Support Measures) equipment that helps it pinpoint and trace back incoming electromagnetic signals. Given the X-47B’s design’s inherent strengths of stealth and long endurance, additional modules or payloads for tasks like signals collection must surely be expected.

Naval UCAVs: Contracts and Key Events

See also “Boeing to Advance UAV Aerial Refueling” for background and updates regarding unmanned aerial refueling test programs in the US military – which now include UCAS-D/ N-UCAS.

Unless otherwise indicated, The Naval Air Systems Command Patuxent River, MD manages these contracts.

FY 2013

In-depth carrier ops testing; UCAS-D deck handling, catapult launch, and arrested landing tests; Despite cuts, UCLASS plans are still on.

Carrier launch
click for video

July 10/13: X-47B “Salty Dog 502″ will leave NAS PAx River, MD and fly to USS George H.W. Bush, for the 1st carrier landing by a UAV. DoD Live.

July 2/13: UCLASS. Lockheed Martin touts a recent UCLASS demonstration at NAVAIR, but their focus is on back-end and Common Control systems, rather than the UCAV itself. Lockheed Martin:

“Using an open architecture framework integrated with DreamHammer’s Ballista [DID: link added] drone control software and Navy compliant software protocols, a single operator managed multiple UAS platforms [including Lockheed Martin's UCLASS concept] simultaneously. The team also used the new Navy Cloud capability to demonstrate control of the ISR sensors and fully integrate the data into one complete mission picture. The team then used this picture to rapidly re-task and re-route the UAS assets. In addition to using DreamHammer’s Ballista drone control software in this UCLASS demonstration, Lockheed Martin is teamed with DreamHammer Government Solutions in pursuit of the upcoming Navy Common Control System contract.”

June 28/13: JPALS/N-UCAS. Engility Corp. in Mount Laurel, NJ receives a $12.5 million cost-plus-fixed-fee contract, exercising an option for engineering services in support of the Joint Precision Approach and Landing Systems (JPALS) and the Navy Unmanned Combat Aerial Systems programs. JPALS is a ground or ship-based system that adds extra precision to GPS, and is used to help land aircraft. It’s a critical enabler for naval UAVs like UCAS-D, UCLASS, etc.

$4 million in FY 2013 RDT&E funds are committed immediately. Services to be provided include requirements definition and analysis; prototyping; test and evaluation; technical assistance; system analysis; engineering; software development, integration and maintenance; test data acquisition; reduction and analysis; technical logistic support; configuration management; training support; and program and project management.

Work will be performed in St. Inigoes, MD (95%); Providence, RI (3%); and Chicago, IL (2%); and is expected to be complete by in January 2014 (N00421-12-C-0048).

May 17/13: Touch and Go. The X-47B UCAS-D follows its catapult launch with a touch-and-go landing on USS George W. Bush [CVN 77], which tests its ability to fly precision approaches to a moving target.

A touch-and-go doesn’t trap the wire, but throttles the engine to full and takes off again. Carrier-based planes have to be able to do that if they miss the wire and pull a “bolter,” which is a guaranteed way to get harassed by your fellow pilots. Not sure what you do to a UAV. Perhaps the Navy can offer a rotating pool of drone software programmers, available for friendly abuse via secure video conference. US NAVAIR | US Navy.

May 14/13: Carrier launch. An X-47B UCAS-D is maneuvered into position on deck, and launched from USS George W. Bush [CVN 77]. The US Navy, Northrop Grumman et. al. hail it as a revolutionary milestone. We’ll grant that launching amidst the busy, complicated, and dangerous goings-on of a carrier deck is unlike any land-based challenge. It’s a difficult task for humans, and a difficult task for computers to do with human help.

Having said that, this isn’t the complete circuit. It’s the next logical step after on-ship deck tests (vid. Nov. 26/12) and land-based catapult launch (vid. Nov 29/12). We’ve said before that they won’t have a revolution on their hands until they can do the complete circuit: maneuver, launch, fly a circuit, and land. The next revolution after that will involve aerial refueling. When they do these things, we’ll join the chorus. US NAVAIR | Northrop Grumman.

May 6/13: Trap. The X-47B UCAS-D demonstrator successfully traps the wire as it lands at NAS Patuxent River, MD’s shore-based catapult and arresting gear complex. Northrop Grumman.

April 12/13: Support. FBO.gov:

“This synopsis provides notice of the Government’s intent to solicit a proposal on a sole source basis from Sierra Nevada Corporation, 444 Salomon Circle, Sparks, NV for work providing support in troubleshooting, problem resolution, and anomaly investigation associated with the Precision Global Positioning System (PGPS) as part of the existing Unmanned Combat Air System-Demonstration (UCAS-D) Program. This request for proposal will be issued in accordance with the terms and conditions of Basic Ordering Agreement (BOA) N00421-10-G-0001.

This acquisition is being pursued on a sole source basis under the statutory authority 10 U.S.C. 2304(c)(1), as implemented by Federal Acquisition Regulation Part 6.302-1, only one responsible source and no other supplies or services will satisfy agency requirements.”

April 7/13: UCLASS. Lockheed Martin finally unveils their Skunk Works’ UCLASS design, which combines elements of their RQ-170 Sentinel stealth reconnaissance UAV with technologies from the F-35C for carrier operations, weapons use, etc. Overall, the design looks quite a bit like Boeing’s X-45C Phantom Ray. LMCO UCLASS Page | YouTube video.

March 26/13: UCLASS. NAVAIR indicates through a presolicitation that it plans to go ahead with follow-on Preliminary Design contracts to all 4 UCLASS study contract vendors (Boeing, General Atomics, Lockheed Martin, Northrop Grumman – vid. June 23/11), and continue the Unmanned Carrier Launched Airborne Surveillance and Strike program.

The contracts are expected by the summer of 2013, supporting up to 2 years of work on the UAVs, datalinks for communications and control, and the carrier operations segment. They’re expected to carry each design to the Preliminary Design Review by Q3 2014, and support post-PDR design maturation and follow-on engineering. The next step after that will be the selection of 1 winner, and UCLASS initial operational capability within 3-6 years. FBO | Defense Update.

Dec 21/12: Aerial Refueling. Northrop Grumman Systems Corp. in San Diego, CA receives a $9.7 million cost-plus-incentive-fee contract modification for Autonomous Aerial Refueling (AAR) demonstration activities in support of the N-UCAS program. Services will include completion of Delta Critical Design Review (DCDR), surrogate testing with manned aircraft, preparation for the X-47B demonstration, travel, and support technical data for the AAR demonstration activities.

Work will be performed in Manhattan Beach, CA (70%) and Patuxent River, MD (30%), and is expected to be complete in December 2013. All contract funds are committed immediately (N00019-07-C-0055).

Nov 29/12: Testing. An X-47B is launched using a land-based naval steam catapult, at NAS Patuxent River, MD. The releases are full of words like “historic,” but DID just doesn’t see it. Lots of UAVs have been launched by non-steam catapults, steam catapult technology isn’t new, and this isn’t a launch from an actual ship. It’s just a test to verify that the X-47B’s landing gear, body structure, and software, which were designed from the outset to handle the rigors of a steam catapult launch, can indeed do so. A milestone, yes, but a minor one.

When an X-47B is launched from an actual ship, and recovered aboard, that will be historic. Ditto for successful aerial refueling. US NAVAIR | Northrop Grumman.

X-47B deck tests
click for video

Nov 26/12: Testing. An X-47B air vehicle arrives by barge from Naval Air Station Patuxent River, MD, and is craned aboard the USS Harry S. Truman [CVN 75] for deck handling tests aboard the ship.

One suspects that civil airspace certification for high-end drones can’t happen soon enough for NAVAIR and the US military. US NAVAIR.

Nov 15/12: Testing. Northrop Grumman announces that its UCAS-D team has successfully completed initial onshore trials of the Control Display Unit (CDU), a new wireless, handheld controller used for carrier-deck maneuvering. Tests were basic: control engine thrust; roll forward, brake and stop; nose wheel steering; and maneuver the aircraft efficiently into a catapult or out of the landing area following a mock carrier landing.

On-ship deck trials are next.

Nov 6/12: NASIF Testing. US NAVAIR discusses testing at the “N-UCAS Aviation/Ship Integration Facility.” If NASIF didn’t exist, the Navy would have to use an aircraft carrier for this sort of testing, and it can’t afford that. Hence the NASIF building, stocked with Primary Flight Control (PriFly), Landing Signals Officer (LSO), Carrier Air Traffic Control Center (CATCC) and Mission Control Element (MCE) equipment.

The UCAS-D program uses the facility for system integration of new equipment, and UAV/manned surrogate demonstration events. Events like final Human Systems Integration (HSI) modeling and simulation testing for sailors from USS Carl Vinson and USS Abraham Lincoln.

Instead of using the current method of controlling multiple aircraft with radar displays and voice radio, the event tested their ability to send and receive digital instructions to and from aircraft, in addition to using voice instructions. This capability is absolutely required for UAV, but it will also help manned fighters, whose 60-second landing spread includes a final 20 seconds of enforced controller silence. If the controllers can communicate with everyone else by text while a pilot lands, that’s a big step forward.

The controller teams showed they could handle it over about 20 test scenarios, which progressed from relaying UAV commands to a UAV mission operator for entry, to direct communication with the simulated UAV and more automated systems.

FY 2012

Aerial refueling expands to include both boom and drogue; How can it be a UFO, if it’s on a truck?

X-47B, Edwards AFB
(click to view full)

Aug 20/12: UCLASS. NAVAIR awards a small $440,315 firm-fixed-price delivery order to Rockwell Collins, for Phase II of the ARC-210 UCLASS feasibility study with JPALS.

ARC-210 radios are used to communicate with UAVs over UHF, and their software may need fine-tuning to work with UCLASS for all of the Navy’s requirements (N00019-08-G-0016-0076). contract FBO.gov.

Aug 13/12: UCLASS. Naval Air Systems Command releases a Request for

Information to evaluate the Draft Mission Effectiveness Analysis (MEA) Tool developed by the UCLASS Program Office. In practice this is a spreadsheet fed with warfare analysis models, where the user can input UAV parameters for comparative assessment (N00019-12-P7-ZD235).

The RFP should come in the fall with a down-select to a single design in 2016 aiming for IOC in 2020. The spreadsheet is classified SECRET/NOFORN. FBO.gov | Flight International.

Early July 2012: Testing. Members from the UCAS-D carrier integration team engage in extensive software testing aboard aboard USS Harry S. Truman [CVN 75], talking to fleet air-traffic controllers and air-department personnel about the usability of the new software, and lessons learned. Land-based X-47B tests will continue at Patuxent River, MD, and the goal is a carrier landing in about a year. US NAVAIR.

June 14/12: UFO-G. US NAVAIR indirectly confirms that the wrapped object spotted on a truck in Kansas was UCAS-D AV-2 (vid. June 6/12 entry), being trucked across the country from Edwards AFB, CA to NAS Patuxent River, MD for the next phase of flight tests. Easier than getting the civil flight waivers, I guess.

June 8/12: JPALS. L-3 Service, Inc. in Mount Laurel, NJ receives a $12.5 million cost-plus-fixed-fee contract for engineering services in support of the precision GPS Joint Precision Approach and Landing System, and the Navy’s UCAS-D program. The 2 are highly connected, of course, since UCAVs will need to depend on precision GPS, in order to land on carriers (vid. the July 2/11 test). JPALS will also help manned fighters.

Services to be provided include requirements definition and analysis, prototyping, test and evaluation, technical assistance, system analysis, engineering, software work, test data acquisition, reduction and analysis, technical logistic support, configuration management, training support, and program and project management. Work will be performed in St. Inigoes, MD (95%); Providence, RI (3%); and Chicago, IL (2%). Work is expected to be complete in October 2012. This contract was not competitively procured, pursuant to the FAR 6.302-1, by the US Naval Air Warfare Center Aircraft Division in Patuxent River, MD (N00421-12-C-0048).

June 6/12: UFO-G. From the Augusta (KS) Gazette:

“This morning several Butler County Sheriff officers and KDOT personnel escorted a flatbed trailer entering Augusta from the south on US Highway 77 and headed east out of town on US Highway 54. Traffic was backed up coming in and going out of town. At first glance the strange-shaped cargo cloaked in industrial-strength shrink wrap appeared to be a saucer, but an unidentified KDOT worker advised it was an X-47B Combat Drone coming from Texas and en route to an unknown destination.”

Operating unmanned jets in US civil air space is a bit of a problem, which may help to explain the decision to ship it by road. Kansas is a rather roundabout route from Texas to Patuxent River, MD, but it is more of a straight line from California.

Jan 21/12: Testing. NAVAIR/AFRL’s AAR program completes a series of ground and flight tests that began in November 2011, using a Calspan Learjet surrogate with X-47B hardware and software, and a Omega Air Refueling K-707 aerial tanker. The tests included simulated flight demonstrations of both boom/receptacle (USAF) and probe-and-drogue (Navy & European) aerial refueling techniques, but no fuel was actually transferred, and Calspan’s Learjet wasn’t equipped for that anyway. The tests were all about correct positioning and coordination, beginning at a position 1 nautical mile from the K-707, and allowing autonomous guidance to move the Learjet into the 3 air-air refueling positions: observation, contact, and re-form.

Navy UCAS program manager Capt. Jaime Engdahl says that the next big step will involve using the actual X-47B. The team plans to conduct 2 more surrogate test periods before a planned refueling demonstration with the X-47B in 2014. NAVAIR | Northrop Grumman.

Nov 22/11: AV-2 flies. The fully-equipped UCAS-D demonstrator #AV-2 takes off for the 1st time at Edwards AFB, CA. That’s about a year late, but AV-1′s issues had to be ironed out first.

With 2 flying UCAVs, the program is expected to move AV-2 to NAS Patuxent River, MD by the end of 2011, and begin testing carrier landing technologies in 2012. That will include GPS-guided precision approaches to the carrier, arrested landings and “roll-out” catapult launches at land-based test facilities; and flight testing of new precision navigation computers and guidance/ navigation/ control software recently installed on both aircraft. The new suite of hardware and software is designed to let the X-47B land safely on a moving aircraft carrier deck. AV-1 will continue testing at Edwards AFB, with a focus on finding its flight limits. Northrop Grumman.

Nov 7/11: Aerial refueling. Inside the Navy reports [subscription] that the US Navy will be expanding the X-47B’s planned aerial refueling capability, to autonomously refuel while in flight with both USAF Air Force and USN aerial tankers.

The USAF uses KC-135s and KC-10s, but many of the KC-135s need to place an attachment on the refueling boom, in order to refuel probe-carrying aircraft. The US Navy has KC-130 Hercules aerial tankers, and its F/A-18E/F Super Hornets can become “buddy refuelers” with special wing tanks.

FY 2011

1st UCAS-D flight; 1st carrier landing using a surrogate plane; UCLASS study contracts.

“Look ma, no hands!”
(click to view full)

July 18/11: Northrop Grumman Systems in San Diego, CA receives a $25 million cost-plus-incentive-fee contract modification for UCAS-D autonomous aerial refueling technology maturation and demonstration activities. They’ll provide “air systems, air vehicle segment, and mission management segment requirements definition; integration planning and verification planning; and definition of certification requirements and approach.”

Work will be performed in San Diego, CA, and is expected to be complete in December 2012. US Naval Air Systems Command in Patuxent River, MD manages the contract (N00019-07-C-0055).

July 2/11: Testing. A contractor/government team lands an F/A-18D test aircraft from Navy squadron VX-23 on the USS Eisenhower in the western Atlantic Ocean, using hardware and software developed for the X-47B UCAS-D. This Hornet had a pilot on board as a safety precaution, but the system landed the plane. A King Air 300 twin-prop plane from Air-Tec, Inc. was also used as a surrogate to test mission management, command and control, communications, air traffic control and navigation, without executing an actual landing. Participating organizations included USN PEO Carriers, NAVSEA PMA-268, and the crew of the USS Dwight D. Eisenhower; plus industry partners Northrop Grumman, Rockwell Collins, Honeywell, L-3 Communications, SAIC, ARINC and Sierra Nevada Corporation.

It’s a big step forward for the UCAS-D program, and came after a series of interim steps detailed in the accompanying releases. It could also change the way Navy pilots land manned aircraft. Right now, carrier andings are very manual, and visual. All air traffic control instructions are by voice, and even a good portion of navigation data has to be read out over the air, while visual signals cement the final approach.

Supporting a UAV, and possibly retrofitted manned fighters, in future operations, required some important ship modifications. Eisenhower’s Landing Signal Officer (LSO) equipment was altered to communicate directly with the VX-23 F/A-18D through a digital network, and so were the ship’s primary flight control (“tower”) and Carrier Air Traffic Control Center (CATCC). The UAS operator’s equipment, installed in one of the carrier’s ready rooms, was the other key network node. Precision Global Positioning System (PGPS) capabilities with sub-1 meter accuracy were then added into the ship and the aircraft, to provide constant position awareness. US NAVSEA | Northrop Grumman.

Unmanned carrier landing!

June 23/11: UCLASS US NAVAIR awards a set of UCLASS study contracts to 4 vendors. Boeing publicly touted its own 8-month, $480,000 study contract, which includes developing of a concept of operations, an analysis of alternatives, and an investigation of notional solutions for various components of the Navy’s UCLASS program, which could be fielded for ISR and strike operations by 2018. Boeing’s option would include the X-45C Phantom Ray UCAV, but similar contracts for about $500,000 each were issued to Northrop Grumman (X-47B/ UCAS-D), General Atomics (Sea Avenger, also new EMALS/AAG carrier launch/recovery systems), and Lockheed Martin (unknown, has previously discussed the possibility of an unmanned F-35).

The UCLASS system will consist of an air segment (the UCAV), a connectivity and control segment, a launch and recovery segment, and a systems support segment. FBO.gov announcement | Boeing. See also March 28/11, March 19/10 entries.

UCLASS Studies

May 16/11: Northrop Grumman announces that it has picked up awards from the USAF Flight Test Center at Edwards AFB, CA, including Flight Test Team of the Quarter (above candidates like the F-35) for its X-47B/UCAS-D aircraft.

April 25/11: Sub-contractors. ARINC Engineering Services, LLC in Annapolis, MD receives a $9.7 million cost-plus-fixed-fee contract for technical and engineering services in support of the Joint Precision Approach and Landing Systems (JPALS) and Navy Unmanned Combat Aerial Systems (N-UCAS) programs. The 2 are related, as JPALS precision GPS-driven approach is a natural fit with the landing needs of a carrier-borne UCAV.

Work will be performed in Lexington Park, MD (80%), and St. Inigoes, MD (20%), and is expected to be complete in October 2011. This contract was not competitively procured by the US Naval Air Warfare Center Aircraft Division in Patuxent River, MD (N00421-11-C-0034).

March 28/11: UCLASS. US NAVAIR issues a Broad Agency Announcement regarding UCLASS, in solicitation #N00019-11-R-0031:

“The Naval Air Systems Command seeks proposals which conceptually demonstrate that a UCLASS system can provide a persistent Carrier Vessel-Nuclear (CVN) based Intelligence, Surveillance, and Reconnaissance (ISR) and strike capability supporting carrier air wing operations in the 2018 timeframe. In order to identify and explore available trade space… The program anticipates leveraging existing, deployed Department of Defense (DoD) systems to launch, recover, and control the air vehicle, transfer data in support of time critical strike operations, and conduct persistence ISR operations. The ongoing Unmanned Combat Air System-Demonstration program will inform UCLASS development and provide technology risk reduction for Unmanned Aircraft (UA) integration into carrier environments.”

March 14/11: Testing. A US Navy/Northrop Grumman Corporation test team issues a report stating that 5 weeks of dynamic load testing on X-47B air vehicle 2 (AV-2) demonstrated its ability to handle the stresses, strains and dynamic loads associated with carrier catapult launches and arrested landings, and air-to-air refueling. AV-2 is the X-47B airframe that will be equipped for air-to-air refueling tests.

The tests themselves finished on Jan 24/11, a week ahead of schedule. NGC AV-2 manager says they included 8 design conditions, including a 3-G symmetrical pull up, a 2.4G rolling pullout, and turbulence during aerial refueling; and 5 conditions expected to occur on the ground, including takeoff and landing tests involving the nose gear and tail hook. To conduct the tests, engineers bonded pads to 200 points on the airframe surface, and then pushed and pulled on those pads using hydraulic jacks to simulate various static and dynamic load conditions. Northrop Grumman.

March 1-4/11: Testing. The X-47B UCAS-D makes its 2nd and 3rd of 49 planned flights at Edwards AFB, CA. Testers are working to expand the flight test envelope in terms of air speeds, altitudes and operating weights, while testing key systems. Major concerns at this point include its flight control system’s ability to handle unpredictable crosswinds and turbulence at all speeds, the accuracy of its flush-mounted air data testing instruments, and engine performance. NGC.

Feb 15/11: UCLASS. General Atomics Aeronautical Systems, Inc. announces success in wind-tunnel tests of its Sea Avenger model, intended to validate its new wing’s low-speed handling characteristics. a key wind tunnel test on a model of its jet-powered Sea Avenger Predator C variant. The new wing is also designed to increase aircraft dash speeds, which is an interesting engineering combination.

GA-ASI President Frank W. Pace touts the 90-hour, 8-day test at the San Diego Air & Space Technology Center, as a classic example of his firm’ push to invest in early development, ahead of customer requirements for a UCLASS type system. The firm’s past history with the MQ-1 Predator and MQ-9 Reaper backs up his boast.

Feb 7/11: Sub-contractors. Lockheed Martin touts their own involvement in the X-47B program, which mostly revolves around low observable (stealth) design and aspects of aerodynamic edges, inlet lip and control surfaces, and an all new arresting hook system. Al Romig is the current VP of Advanced Development Programs for Lockheed Martin Aeronautics, and the firm completed delivery of its UCAS-D hardware in December 2009. Lockheed Martin will continue to support further UCAS-D flight testing, as well as carrier flight operations.

UCAS-D 1st flight
(click to view full)

Feb 4/11: First UCAS-D flight. The flight took off at 14:09 PST (GMT -0800) at Edwards AFB, and lasted 29 minutes, flying between 180 – 240 kt and climbing to 5,000 feet with landing gear down at all times, while executing racetrack patterns. It provided test data to verify and validate system software for guidance and navigation, and aerodynamic control of the tailless design. The flight follows airframe proof load tests, propulsion system accelerated mission tests, software maturity and reliability simulations, full system taxi tests, and numerous other system test activities that happen before any 1st flight.

Eugene Fly had made the first landing on a stationary ship on Jan 18/1911, but a 100th anniversary flight for X-47B #AV-1 wasn’t possible. Some of items that delayed this flight from original expectations in late 2009 included propulsion acoustic and engine-start sequencing issues, an asymmetric braking issue uncovered during taxi tests, and a last-minute maintenance issue with an auxiliary power generation system.

Testing continues. Aircraft AV-1 will remain at Edwards AFB for flight envelope expansion before transitioning to Naval Air Station Patuxent River, MD, later in 2011, where they will validate its readiness to begin testing in the maritime and carrier environment. Meanwhile, the refueling-ready AV-2 has completed its design limit load tests up to 130% with no test anomalies, showing that it’s able to withstand g-loads encountered during aerial refueling. It won’t begin its own tests until AV-1′s initial tests are done, which is currently planned for late 2011. The program is currently preparing the X-47B for carrier trials in 2013. US Navy | NGC release | Bullet points, images & video | Aviation Week.

1st flight

Feb 2/11: USAF opportunity? Defense news quotes Col. James Gear, director of the USAF’s Remotely Piloted Aircraft Task Force, on the future of its UAV fleet. Despite a big commitment to the MQ-1 Predator, the MQ-9 Reaper caused a major mid-stream shift in plans. Col. Gear cites some existing issues with the MQ-9, which could leave it open to a similar shift.

The Reaper does not fare well in icing conditions, and is also not considered survivable against anti-aircraft systems. The issue of jam and snoop-proof data links, and trace-back and verification of signal origins, has also been a live question during the MQ-1 and MQ-9′s tenure. The “MQ-X” that replaces it will have to do better on all 3 counts, and the USAF also wants it to be easily upgradeable via switch-out modules. The Colonel believes the resulting UAV will end up being common with the US Navy’s carrier-based UCLASS requirement, as the 2 services are cooperating closely. That could give Northrop Grumman’s funded X-47B N-UCAS an edge over Boeing’s privately developed X-45 Phantom Ray. It could also offer a boost to General Atomics’ Predator C/ Sea Avenger.

FY 2010

UCAS-D testing; UCLASS RFI and Navy plans; Does GA’s Predator C have a customer?

Manned and…not
(click to view full)

July 19/10: UCLASS. General Atomics Aeronautical Systems, Inc. touts its jet-powered Predator C Avenger UAS as “ready for deployment” under programs like the British RAF’s SCAVENGER, or as the MQ-X successor to the USAF’s MQ-9 Reapers. The Avenger family’s avionics are based upon the Predator B/MQ-9 Reaper, and the plane features both radar and optical sensor options, plus a variety of internal weapons loads up to 2,000 pound Joint Direct Attack Munitions (JDAM).

Ready for deployment” is stretching things a bit. The Predator C series first flew in April 2009, “tail one” is currently averaging 2-3 flights a week, and flight tests were recently transferred from GA-ASI’s Gray Butte Flight Operations Facility in Palmdale, CA, to Naval Air Station (NAS) China Lake, CA. GA-ASI Aircraft Systems Group President Frank Pace does describe some results as “exceeding our expectations,” including excellent agreement between advance engineering and flight tests, and fuel burn rates up to 10% better than predicted models. The UAV reportedly uses a Pratt & Whitney Canada PW545B engine, which also powers the Cessna Citation XLS business jet.

May 3/10: UCLASS. General Atomics announces that it has submitted its “Sea Avenger” as a potential candidate for UCLASS airborne surveillance and strike requirement. Their UCAV is based on their jet-powered, 44-foot long and 66-foot wingspan “Predator C Avenger,” which can fly at 400 knots for up to 20 hours, and operate up to 50,000 feet. Design changes include a highly fuel-efficient engine and inlet design, a Lynx SAR ground-looking radar, retractable electro-optical/infrared (EO/IR) sensors and a 3,000 pound capacity internal weapons bay, and folding wings. The structure can accommodate carrier suitable landing gear, tail hook, drag devices, and other provisions for carrier operations.

Developed on company funds for near-term military use, the base Predator C Avenger is continuing through its planned test program, with a 2nd aircraft currently under development and expected to be complete by the end of 2010. General Atomics.

March 19/10: UCLASS RFI. The US Navy issues a Request for Information for a (UCLASS). The RFI indicates that the Navy is looking to move ahead with full unmanned combat aircraft earlier than its original plans.

“The Navy is interested in information on carrier based, low observable (LO) Unmanned Air Systems (UAS) concepts optimized for Irregular and Hybrid Warfare scenarios, capable of integrating with manned platforms as part of the Carrier Air Wing (CVW) by the end of 2018 to support limited operations in contested scenarios. The UAS should enhance situational awareness and shorten the time it takes to find, fix, track, target, engage, and assess time sensitive targets. This RFI is intended to determine the existence of sources that can provide a limited inventory of systems capable of being operated by fleet Sailors and performing the above mentioned Navy UAS mission.”

The UCLASS concept involves 4-6 UAVs that could perform both intelligence/ surveillance/ reconnaissance (ISR) and strike missions in contested airspace, that are able to fly for 11-14 hours without refuelling. Industry reportedly expected the navy to release a UCLASS RFP in early 2011, and interested parties beyond Northrop Grumman include General Atomics (Sea Avenger), and reportedly Boeing (X-45 Phantom Ray) as well. See: FedBizOpps RFI | Flight International | Jane’s.

March 17/10: Leadership. Janis Pamiljans, previously vice president and program manager of Northrop’s KC-30 aerial refueling tanker bid for the USAF, takes over from Scott Winship as vice president of N-UCAS related efforts. Pamiljans also has worked as a program manager on the F/A-18 and F-35 strike fighter programs.

Aviation Week points out that this is just one of several corporate moves, which seem to be aimed at freeing people up to participate in “black” (classified) programs, and develop a next-generation stealth aircraft for reconnaissance and long-range strike. Aviation Week | Defense News.

March 2/10: Leadership. Capt. Jeff Penfield takes over the Navy’s X-47B program office, replacing Capt. Martin Deppe. Source.

Feb 18/10: Predator C. Don Bolling, a Lockheed Martin senior business development manager, hints that General Atomics’ Predator C has a customer, and isn’t just a privately funded effort. He tells a media source that General Atomics Aeronautical Systems is interested in “Global Hawk-like” payloads for high altitude surveillance on its jet-powered Predator-C Avenger UAV, putting efforts to install the F-35 fighter’s Sniper pod-derived electro-optical targeting system (EOTS) on hold.

The shift was reportedly at the request of a customer, which made the report news because the Predator C wasn’t known to have a customer. The USAF already flies Global Hawks, and export approvals for the EOTS and Predator C would be an involved process. The most likely guess as to the customer would be the CIA, which does operate UAVs of its own, or US Special Operations Command. Flight International.

Feb 13/10: Testing. The US Navy announces that N-UCAS team members are underway with USS Abraham Lincoln [CVN 72] to test the integration of existing ship systems with new systems that will support the X-47B in carrier-controlled airspace. The team is testing X-47B software integration by using a King Air turbo prop “surrogate” aircraft taking off and landing from shore, but approaching the carrier and performing the various procedures associated with systems like Prifly, CATCC, LSO, etc. The digital messages from shipboard controllers receive “wilco” (ACK) responses to verify receipt.

Additional developmental testing later this year, will involve testing the software integration using an F/A-18 surrogate aircraft, to more closely emulate the X-47B’s flight.

Feb 4/10: Navy plans. Defense News reports that the N-UCAS program is slated to receive a $2 billion boost over the next 5 years, and seems set to follow the RQ-4 Global Hawk procurement model, rather than remaining a demonstration aircraft.

The RQ-4 Global Hawk was an advanced development program that was moved to the front lines after the 9/11 attacks, and became a fully operational platform. The 2010 Quadrennial Defense Review featured a tilt away from technology demonstrator status, and toward an X-47 UCAV that can perform surveillance and/or strike roles. That would let the Navy field operational UCAVs much sooner, and allow them to field a capability that could be similar but superior to the USAF’s current RQ-170 Sentinel/”Beast of Kandahar” stealth UAV. Those exact capabilities remain a matter for discussion, however, as Navy Undersecretary and UCAV advocate Bob Work points out:

“There is a lively debate over whether or not the N-UCAS demonstrator should result in a penetrating, ISR strike bird, or be more of a strike fighter… That debate has not quite been resolved. Having this extra $2 billion added to the budget is going to help us resolve that debate.”

Jan 26/10: Aerial refueling. Northrop Grumman Integrated Systems Sector in San Diego, CA received an $11 million not-to-exceed modification to a previously awarded cost-plus-incentive-fee contract for autonomous aerial refueling technology maturation and demonstration activities in support of the Navy UCAS-D.

Work will be performed in El Segundo, CA (60%) and Rancho Bernardo, CA (40%), and is expected to be complete in November 2010 (N00019-07-C-0055).

Jan 17/10: Testing. First low-speed taxi test of an X-47 N-UCAS. Source.

Dec 22/10: Delay. Trouble with engine start sequencing and propulsion acoustics will now reportedly delay the X-47B’s December 2009 flight to some time in the first 3 months of 2010. Gannett’s Navy Times | Defense Update.

Nov 25/09: Aviation Week reports that the X-47 UCAS-D system demonstrator is experiencing “propulsion acoustic and engine-start sequencing” issues, which will require additional testing and push its 1st flight to 2010.

The US Navy reportedly says UCAS-D is still on track for sea trials in 2012, but Northrop Grumman has placed a “moratorium” on press interviews for UCAS-D – never a good sign.

Nov 2/09: Navy plans. The Brookings Institute’s 21st Century Defense Initiative hosts Chief of Naval Operations Admiral Gary Roughead, who discusses the U.S. Navy’s use of new technologies, and its development and integration of unmanned systems. Excerpts:

“I would say that where we can make some significant breakthroughs us just in the organizing principles and in the way that we approach the unmanned systems. The idea of being able to disembark or embark long-range unmanned air systems for example changes the nature in which we can run flight decks, changes the nature of the carrier air wing configurations as we move into the future.

…I would also say that I am often struck that as we talk about unmanned systems we’ve really become enamored with the vehicle itself and there has been very, very little discussion and arguably little work on something that makes it all work together and that’s the network and the architecture of the network, how the information will be moved, what are the redundancies that you would have in place, and what are the common protocols that are going to be required as we move into the future.”

See WIRED Danger Room | Brookings Institute and full transcript [PDF]

Oct 6/09: Sub-contractors.

Show more