2012-11-06

Abstract

The WebSocket protocol enables two-way realtime communication between
clients and servers.  This document specifies a new WebSocket sub-
protocol as a reliable transport mechanism between SIP (Session
Initiation Protocol) entities to enable usage of SIP in new
scenarios.  This document normatively updates RFC 3261.

Table of Contents

1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3

2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  3

2.1.  Definitions  . . . . . . . . . . . . . . . . . . . . . . .  3

3.  The WebSocket Protocol . . . . . . . . . . . . . . . . . . . .  4

4.  The WebSocket SIP Sub-Protocol . . . . . . . . . . . . . . . .  4

4.1.  Handshake  . . . . . . . . . . . . . . . . . . . . . . . .  5

4.2.  SIP encoding . . . . . . . . . . . . . . . . . . . . . . .  5

5.  SIP WebSocket Transport  . . . . . . . . . . . . . . . . . . .  5

5.1.  General  . . . . . . . . . . . . . . . . . . . . . . . . .  6

5.2.  Updates to RFC 3261  . . . . . . . . . . . . . . . . . . .  6

5.2.1.  Via Transport Parameter  . . . . . . . . . . . . . . .  6

5.2.2.  SIP URI Transport Parameter  . . . . . . . . . . . . .  6

5.2.3.  Via received parameter . . . . . . . . . . . . . . . .  7

5.2.4.  SIP transport implementation requirements  . . . . . .  7

5.3.  Locating a SIP Server  . . . . . . . . . . . . . . . . . .  8

6.  Connection Keep Alive  . . . . . . . . . . . . . . . . . . . .  8

7.  Authentication . . . . . . . . . . . . . . . . . . . . . . . .  9

8.  Examples . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

8.1.  Registration . . . . . . . . . . . . . . . . . . . . . . .  9

8.2.  INVITE dialog through a proxy  . . . . . . . . . . . . . . 11

9.  Security Considerations  . . . . . . . . . . . . . . . . . . . 15

9.1.  Secure WebSocket Connection  . . . . . . . . . . . . . . . 15

9.2.  Usage of SIPS Scheme . . . . . . . . . . . . . . . . . . . 16

10. IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 16

10.1. Registration of the WebSocket SIP Sub-Protocol . . . . . . 16

10.2. Registration of new NAPTR service field values . . . . . . 16

10.3. SIP/SIPS URI Parameters Sub-Registry . . . . . . . . . . . 16

10.4. Header Fields Sub-Registry . . . . . . . . . . . . . . . . 17

10.5. Header Field Parameters and Parameter Values

Sub-Registry . . . . . . . . . . . . . . . . . . . . . . . 17

11. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 17

12. References . . . . . . . . . . . . . . . . . . . . . . . . . . 17

12.1. Normative References . . . . . . . . . . . . . . . . . . . 17

12.2. Informative References . . . . . . . . . . . . . . . . . . 18

Appendix A.  Implementation Guidelines . . . . . . . . . . . . . . 19

A.1.  SIP WebSocket Client Considerations  . . . . . . . . . . . 20

A.2.  SIP WebSocket Server Considerations  . . . . . . . . . . . 20

Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 21

Baz Castillo, et al.      Expires May 10, 2013                  [Page 2]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

1.  Introduction

The WebSocket [RFC6455] protocol enables message exchange between

clients and servers on top of a persistent TCP connection (optionally

secured with TLS [RFC5246]).  The initial protocol handshake makes

use of HTTP [RFC2616] semantics, allowing the WebSocket protocol to

reuse existing HTTP infrastructure.

Modern web browsers include a WebSocket client stack complying with

the WebSocket API [WS-API] as specified by the W3C. It is expected

that other client applications (those running in personal computers

and devices such as smartphones) will also make a WebSocket client

stack available.  The specification in this document enables usage of

SIP in these scenarios.

This specification defines a new WebSocket sub-protocol (as defined

in section 1.9 in [RFC6455]) for transporting SIP messages between a

WebSocket client and server, a new reliable and message boundary

transport for SIP, new DNS NAPTR [RFC3403] service values and

procedures for SIP entities implementing the WebSocket transport.

Media transport is out of the scope of this document.

Section 3 in this specification relaxes the requirement in [RFC3261]

by which the SIP server transport MUST add a "received" parameter in

the top Via header in certain circumstances.

2.  Terminology

All diagrams, examples, and notes in this specification are non-

normative, as are all sections explicitly marked non-normative.

Everything else in this specification is normative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

2.1.  Definitions

SIP WebSocket Client:  A SIP entity capable of opening outbound

connections to WebSocket servers and communicating using the

WebSocket SIP sub-protocol as defined by this document.

SIP WebSocket Server:  A SIP entity capable of listening for inbound

connections from WebSocket clients and communicating using the

WebSocket SIP sub-protocol as defined by this document.

Baz Castillo, et al.      Expires May 10, 2013                  [Page 3]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

3.  The WebSocket Protocol

_This section is non-normative._

The WebSocket protocol [RFC6455] is a transport layer on top of TCP

(optionally secured with TLS [RFC5246]) in which both client and

server exchange message units in both directions.  The protocol

defines a connection handshake, WebSocket sub-protocol and extensions

negotiation, a frame format for sending application and control data,

a masking mechanism, and status codes for indicating disconnection

causes.

The WebSocket connection handshake is based on HTTP [RFC2616] and

utilizes the HTTP GET method with an "Upgrade" request.  This is sent

by the client and then answered by the server (if the negotiation

succeeded) with an HTTP 101 status code.  Once the handshake is

completed the connection upgrades from HTTP to the WebSocket

protocol.  This handshake procedure is designed to reuse the existing

HTTP infrastructure.  During the connection handshake, client and

server agree on the application protocol to use on top of the

WebSocket transport.  Such application protocol (also known as a

"WebSocket sub-protocol") defines the format and semantics of the

messages exchanged by the endpoints.  This could be a custom protocol

or a standardized one (as the WebSocket SIP sub-protocol defined in

this document).  Once the HTTP 101 response is processed both client

and server reuse the underlying TCP connection for sending WebSocket

messages and control frames to each other.  Unlike plain HTTP, this

connection is persistent and can be used for multiple message

exchanges.

WebSocket defines message units to be used by applications for the

exchange of data, so it provides a message boundary-preserving

transport layer.  These message units can contain either UTF-8 text

or binary data, and can be split into multiple WebSocket text/binary

transport frames as needed by the WebSocket stack.

The WebSocket API [WS-API] for web browsers only defines callbacks

to be invoked upon receipt of an entire message unit, regardless

of whether it was received in a single Websocket frame or split

across multiple frames.

4.  The WebSocket SIP Sub-Protocol

The term WebSocket sub-protocol refers to an application-level

protocol layered on top of a WebSocket connection.  This document

specifies the WebSocket SIP sub-protocol for carrying SIP requests

and responses through a WebSocket connection.

Baz Castillo, et al.      Expires May 10, 2013                  [Page 4]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

4.1.  Handshake

The SIP WebSocket Client and SIP WebSocket Server negotiate usage of

the WebSocket SIP sub-protocol during the WebSocket handshake

procedure as defined in section 1.3 of [RFC6455].  The Client MUST

include the value "sip" in the Sec-WebSocket-Protocol header in its

handshake request.  The 101 reply from the Server MUST contain "sip"

in its corresponding Sec-WebSocket-Protocol header.

Below is an example of a WebSocket handshake in which the Client

requests the WebSocket SIP sub-protocol support from the Server:

GET / HTTP/1.1

Host: sip-ws.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

Origin: http://www.example.com

Sec-WebSocket-Protocol: sip

Sec-WebSocket-Version: 13

The handshake response from the Server accepting the WebSocket SIP

sub-protocol would look as follows:

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

Sec-WebSocket-Protocol: sip

Once the negotiation has been completed, the WebSocket connection is

established and can be used for the transport of SIP requests and

responses.  The WebSocket messages transmitted over this connection

MUST conform to the negotiated WebSocket sub-protocol.

4.2.  SIP encoding

WebSocket messages can be transported in either UTF-8 text frames or

binary frames.  SIP [RFC3261] allows both text and binary bodies in

SIP requests and responses.  Therefore SIP WebSocket Clients and SIP

WebSocket Servers MUST accept both text and binary frames.

5.  SIP WebSocket Transport

Baz Castillo, et al.      Expires May 10, 2013                  [Page 5]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

5.1.  General

WebSocket [RFC6455] is a reliable protocol and therefore the SIP

WebSocket sub-protocol defined by this document is a reliable SIP

transport.  Thus, client and server transactions using WebSocket for

transport MUST follow the procedures and timer values for reliable

transports as defined in [RFC3261].

Each SIP message MUST be carried within a single WebSocket message,

and a WebSocket message MUST NOT contain more than one SIP message.

Because the WebSocket transport preserves message boundaries, the use

of the Content-Length header in SIP messages is optional when they

are transported using the WebSocket sub-protocol.

This simplifies parsing of SIP messages for both clients and

servers.  There is no need to establish message boundaries using

Content-Length headers between messages.  Other SIP transports,

such as UDP and SCTP [RFC4168] also provide this benefit.

5.2.  Updates to RFC 3261

5.2.1.  Via Transport Parameter

Via header fields in SIP messages carry a transport protocol

identifier.  This document defines the value "WS" to be used for

requests over plain WebSocket connections and "WSS" for requests over

secure WebSocket connections (in which the WebSocket connection is

established using TLS [RFC5246] with TCP transport).

The updated augmented BNF (Backus-Naur Form) [RFC5234] for this

parameter is the following (the original BNF for this parameter can

be found in [RFC3261], which was then updated by [RFC4168]):

transport  =  "UDP" / "TCP" / "TLS" / "SCTP" / "TLS-SCTP"

/ "WS" / "WSS"

/ other-transport

5.2.2.  SIP URI Transport Parameter

This document defines the value "ws" as the transport parameter value

for a SIP URI [RFC3986] to be contacted using the SIP WebSocket sub-

protocol as transport.

The updated augmented BNF (Backus-Naur Form) for this parameter is

the following (the original BNF for this parameter can be found in

[RFC3261], which was then updated by [RFC4168]):

Baz Castillo, et al.      Expires May 10, 2013                  [Page 6]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

transport-param  =  "transport="

( "udp" / "tcp" / "sctp" / "tls" / "ws"

/ other-transport )

5.2.3.  Via received parameter

[RFC3261] section 18.2.1 "Receiving Requests" states the following:

When the server transport receives a request over any transport,

it MUST examine the value of the "sent-by" parameter in the top

Via header field value.  If the host portion of the "sent-by"

field contains a domain name, or if it contains an IP address that

differs from the packet source address, the server MUST add a

"received" parameter to that Via header field value.  This

parameter MUST contain the source address from which the packet

was received.

The requirement of adding the "received" parameter does not fit well

into the WebSocket protocol design.  The WebSocket connection

handshake reuses existing HTTP infrastructure in which there could be

an unknown number of HTTP proxies and/or TCP load balancers between

the SIP WebSocket Client and Server, so the source address the server

would write into the Via "received" parameter would be the address of

the HTTP/TCP intermediary in front of it.  This could reveal

sensitive information about the internal topology of the Server's

network to the Client.

Given the fact that SIP responses can only be sent over the existing

WebSocket connection, the Via "received" parameter is of little use.

Therefore, in order to allow hiding possible sensitive information

about the SIP WebSocket Server's network, this document updates

[RFC3261] section 18.2.1 by stating:

When a SIP WebSocket Server receives a request it MAY decide not

to add a "received" parameter to the top Via header.  Therefore

SIP WebSocket Clients MUST accept responses without such a

parameter in the top Via header regardless the Via "sent-by" field

contains a domain name.

5.2.4.  SIP transport implementation requirements

[RFC3261] section 18 "Transport" states the following:

All SIP elements MUST implement UDP and TCP.  SIP elements MAY

implement other protocols.

The specification of this new transport enables SIP to be used as a

session establishment protocol in scenarios where none of other

Baz Castillo, et al.      Expires May 10, 2013                  [Page 7]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

transport protocols defined for SIP can be used.  Since some

environments do not enable SIP elements to use UDP and TCP as SIP

transport protocols, a SIP element acting as a SIP WebSocket Client

is not mandated to implement support of UDP and TCP and thus MAY just

implement the WebSocket transport defined by this specification.

5.3.  Locating a SIP Server

[RFC3263] specifies the procedures which should be followed by SIP

entities for locating SIP servers.  This specification defines the

NAPTR service value "SIP+D2W" for SIP WebSocket Servers that support

plain WebSocket connections and "SIPS+D2W" for SIP WebSocket Servers

that support secure WebSocket connections.

At the time this document was written, DNS NAPTR/SRV queries could

not be performed by commonly available WebSocket client stacks (in

JavaScript engines and web browsers).

In the absence of DNS SRV resource records or an explicit port, the

default port for a SIP URI using the "sip" scheme and the "ws"

transport parameter is 80, and the default port for a SIP URI using

the "sips" scheme and the "ws" transport parameter is 443.

6.  Connection Keep Alive

_This section is non-normative._

It is RECOMMENDED that SIP WebSocket Clients and Servers keep their

WebSocket connections open by sending periodic WebSocket "Ping"

frames as described in [RFC6455] section 5.5.2.

The WebSocket API [WS-API] does not provide a mechanism for

applications running in a web browser to control whether or not

periodic WebSocket "Ping" frames are sent to the server.  The

implementation of such a keep alive feature is the decision of

each web browser manufacturer and may also depend on the

configuration of the web browser.

A future WebSocket protocol extension providing a similar keep alive

mechanism could also be used.

The SIP stack in the SIP WebSocket Client MAY also use a Network

Address Translation (NAT) keep-alive mechanism defined for SIP

connection-oriented transports, such as the CRLF Keep-Alive Technique

mechanism described in [RFC5626] section 3.5.1 or [RFC6223].

Baz Castillo, et al.      Expires May 10, 2013                  [Page 8]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

Implementing this technique would involve sending a WebSocket

message to the SIP WebSocket Server with a content consisting of

only a double CRLF, and expecting a WebSocket message from the

server containing a single CRLF as response.

7.  Authentication

_This section is non-normative._

Prior to sending SIP requests, a SIP WebSocket Client connects to a

SIP WebSocket Server and performs the connection handshake.  As

described in Section 3 the handshake procedure involves a HTTP GET

method request from the Client and a response from the Server

including an HTTP 101 status code.

In order to authorize the WebSocket connection, the SIP WebSocket

Server MAY inspect any Cookie [RFC6265] headers present in the HTTP

GET request.  For many web applications the value of such a Cookie is

provided by the web server once the user has authenticated themselves

to the web server, which could be done by many existing mechanisms.

As an alternative method, the SIP WebSocket Server could request HTTP

authentication by replying to the Client's GET method request with a

HTTP 401 status code.  The WebSocket protocol [RFC6455] covers this

usage in section 4.1:

If the status code received from the server is not 101, the

WebSocket client stack handles the response per HTTP [RFC2616]

procedures, in particular the client might perform authentication

if it receives 401 status code.

Regardless of whether the SIP WebSocket Server requires

authentication during the WebSocket handshake, authentication MAY be

requested at SIP protocol level.  Therefore it is RECOMMENDED that a

SIP WebSocket Client implements HTTP Digest [RFC2617] authentication

as stated in [RFC3261].

8.  Examples

8.1.  Registration

Baz Castillo, et al.      Expires May 10, 2013                  [Page 9]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

Alice    (SIP WSS)    proxy.example.com

|                             |

|HTTP GET (WS handshake) F1   |

|---------------------------->|

|101 Switching Protocols F2   |

|

|                             |

|REGISTER F3                  |

|---------------------------->|

|200 OK F4                    |

|

|                             |

Alice loads a web page using her web browser and retrieves JavaScript

code implementing the WebSocket SIP sub-protocol defined in this

document.  The JavaScript code (a SIP WebSocket Client) establishes a

secure WebSocket connection with a SIP proxy/registrar (a SIP

WebSocket Server) at proxy.example.com.  Upon WebSocket connection,

Alice constructs and sends a SIP REGISTER request including Outbound

and GRUU support.  Since the JavaScript stack in a browser has no way

to determine the local address from which the WebSocket connection

was made, this implementation uses a random ".invalid" domain name

for the Via header sent-by parameter and for the hostport of the URI

in the Contact header (see Appendix A.1).

Message details (authentication and SDP bodies are omitted for

simplicity):

F1 HTTP GET (WS handshake)  Alice -> proxy.example.com (TLS)

GET / HTTP/1.1

Host: proxy.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

Origin: https://www.example.com

Sec-WebSocket-Protocol: sip

Sec-WebSocket-Version: 13

F2 101 Switching Protocols  proxy.example.com -> Alice (TLS)

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

Sec-WebSocket-Protocol: sip

Baz Castillo, et al.      Expires May 10, 2013                 [Page 10]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

F3 REGISTER  Alice -> proxy.example.com (transport WSS)

REGISTER sip:proxy.example.com SIP/2.0

Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKasudf

From: sip:alice@example.com;tag=65bnmj.34asd

To: sip:alice@example.com

Call-ID: aiuy7k9njasd

CSeq: 1 REGISTER

Max-Forwards: 70

Supported: path, outbound, gruu

Contact:

;reg-id=1

;+sip.instance="
"

F4 200 OK  proxy.example.com -> Alice (transport WSS)

SIP/2.0 200 OK

Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKasudf

From: sip:alice@example.com;tag=65bnmj.34asd

To: sip:alice@example.com;tag=12isjljn8

Call-ID: aiuy7k9njasd

CSeq: 1 REGISTER

Supported: outbound, gruu

Contact:

;reg-id=1

;+sip.instance="
"

;pub-gruu="sip:alice@example.com;gr=urn:uuid:f81-7dec-14a06cf1"

;temp-gruu="sip:87ash54=3dd.98a@example.com;gr"

;expires=3600

8.2.  INVITE dialog through a proxy

Baz Castillo, et al.      Expires May 10, 2013                 [Page 11]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

Alice    (SIP WSS)    proxy.example.com    (SIP UDP)       Bob

|                             |                             |

|INVITE F1                    |                             |

|---------------------------->|                             |

|100 Trying F2                |                             |

|

|                             |INVITE F3                    |

|                             |---------------------------->|

|                             |200 OK F4                    |

|                             |

|200 OK F5                    |                             |

|

|                             |                             |

|ACK F6                       |                             |

|---------------------------->|                             |

|                             |ACK F7                       |

|                             |---------------------------->|

|                             |                             |

|                 Bidirectional RTP Media                   |

|
|

|                             |                             |

|                             |BYE F8                       |

|                             |

|BYE F9                       |                             |

|

|200 OK F10                   |                             |

|---------------------------->|                             |

|                             |200 OK F11                   |

|                             |---------------------------->|

|                             |                             |

In the same scenario Alice places a call to Bob's AoR (Address Of

Record).  The SIP WebSocket Server at proxy.example.com acts as a SIP

proxy, routing the INVITE to Bob's contact address (which happens to

be using SIP transported over UDP).  Bob answers the call and then

terminates it.

Message details (authentication and SDP bodies are omitted for

simplicity):

F1 INVITE  Alice -> proxy.example.com (transport WSS)

INVITE sip:bob@example.com SIP/2.0

Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks

From: sip:alice@example.com;tag=asdyka899

To: sip:bob@example.com

Call-ID: asidkj3ss

Baz Castillo, et al.      Expires May 10, 2013                 [Page 12]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

CSeq: 1 INVITE

Max-Forwards: 70

Supported: path, outbound, gruu

Route:

Contact:

;gr=urn:uuid:f81-7dec-14a06cf1;ob>

Content-Type: application/sdp

F2 100 Trying  proxy.example.com -> Alice (transport WSS)

SIP/2.0 100 Trying

Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks

From: sip:alice@example.com;tag=asdyka899

To: sip:bob@example.com

Call-ID: asidkj3ss

CSeq: 1 INVITE

F3 INVITE  proxy.example.com -> Bob (transport UDP)

INVITE sip:bob@203.0.113.22:5060 SIP/2.0

Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bKhjhjqw32c

Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks

Record-Route:
,

From: sip:alice@example.com;tag=asdyka899

To: sip:bob@example.com

Call-ID: asidkj3ss

CSeq: 1 INVITE

Max-Forwards: 69

Supported: path, outbound, gruu

Contact:

;gr=urn:uuid:f81-7dec-14a06cf1;ob>

Content-Type: application/sdp

F4 200 OK  Bob -> proxy.example.com (transport UDP)

SIP/2.0 200 OK

Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bKhjhjqw32c

;received=192.0.2.10

Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks

Record-Route:
,

From: sip:alice@example.com;tag=asdyka899

To: sip:bob@example.com;tag=bmqkjhsd

Call-ID: asidkj3ss

Baz Castillo, et al.      Expires May 10, 2013                 [Page 13]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

CSeq: 1 INVITE

Contact:

Content-Type: application/sdp

F5 200 OK  proxy.example.com -> Alice (transport WSS)

SIP/2.0 200 OK

Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks

Record-Route:
,

From: sip:alice@example.com;tag=asdyka899

To: sip:bob@example.com;tag=bmqkjhsd

Call-ID: asidkj3ss

CSeq: 1 INVITE

Contact:

Content-Type: application/sdp

F6 ACK  Alice -> proxy.example.com (transport WSS)

ACK sip:bob@203.0.113.22:5060;transport=udp SIP/2.0

Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKhgqqp090

Route:
,

,

From: sip:alice@example.com;tag=asdyka899

To: sip:bob@example.com;tag=bmqkjhsd

Call-ID: asidkj3ss

CSeq: 1 ACK

Max-Forwards: 70

F7 ACK  proxy.example.com -> Bob (transport UDP)

ACK sip:bob@203.0.113.22:5060;transport=udp SIP/2.0

Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bKhwpoc80zzx

Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKhgqqp090

From: sip:alice@example.com;tag=asdyka899

To: sip:bob@example.com;tag=bmqkjhsd

Call-ID: asidkj3ss

CSeq: 1 ACK

Max-Forwards: 69

F8 BYE  Bob -> proxy.example.com (transport UDP)

BYE sip:alice@example.com;gr=urn:uuid:f81-7dec-14a06cf1;ob SIP/2.0

Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001

Baz Castillo, et al.      Expires May 10, 2013                 [Page 14]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

Route:
,

From: sip:bob@example.com;tag=bmqkjhsd

To: sip:alice@example.com;tag=asdyka899

Call-ID: asidkj3ss

CSeq: 1201 BYE

Max-Forwards: 70

F9 BYE  proxy.example.com -> Alice (transport WSS)

BYE sip:alice@example.com;gr=urn:uuid:f81-7dec-14a06cf1;ob SIP/2.0

Via: SIP/2.0/WSS proxy.example.com:443;branch=z9hG4bKmma01m3r5

Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001

From: sip:bob@example.com;tag=bmqkjhsd

To: sip:alice@example.com;tag=asdyka899

Call-ID: asidkj3ss

CSeq: 1201 BYE

Max-Forwards: 69

F10 200 OK  Alice -> proxy.example.com (transport WSS)

SIP/2.0 200 OK

Via: SIP/2.0/WSS proxy.example.com:443;branch=z9hG4bKmma01m3r5

Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001

From: sip:bob@example.com;tag=bmqkjhsd

To: sip:alice@example.com;tag=asdyka899

Call-ID: asidkj3ss

CSeq: 1201 BYE

F11 200 OK  proxy.example.com -> Bob (transport UDP)

SIP/2.0 200 OK

Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001

From: sip:bob@example.com;tag=bmqkjhsd

To: sip:alice@example.com;tag=asdyka899

Call-ID: asidkj3ss

CSeq: 1201 BYE

9.  Security Considerations

9.1.  Secure WebSocket Connection

It is recommended that the SIP traffic transported over a WebSocket

communication be protected by using a secure WebSocket connection

Baz Castillo, et al.      Expires May 10, 2013                 [Page 15]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

(using TLS [RFC5246] over TCP).

9.2.  Usage of SIPS Scheme

The SIPS scheme in a SIP URI dictates that the entire request path to

the target be secure.  If such a path includes a WebSocket connection

it MUST be a secure WebSocket connection.

10.  IANA Considerations

10.1.  Registration of the WebSocket SIP Sub-Protocol

This specification requests IANA to register the WebSocket SIP sub-

protocol under the "WebSocket Subprotocol Name" Registry with the

following data:

Subprotocol Identifier:  sip

Subprotocol Common Name:  WebSocket Transport for SIP (Session

Initiation Protocol)

Subprotocol Definition:  TBD: this document

10.2.  Registration of new NAPTR service field values

This document defines two new NAPTR service field values (SIP+D2W and

SIPS+D2W) and requests IANA to register these values under the

"Registry for the Session Initiation Protocol (SIP) NAPTR Resource

Record Services Field".  The resulting entries are as follows:

Services Field   Protocol   Reference

--------------   --------   ---------

SIP+D2W          WS         TBD: this document

SIPS+D2W         WS         TBD: this document

10.3.  SIP/SIPS URI Parameters Sub-Registry

This specification requests IANA to add a reference to this document

under the "SIP/SIPS URI Parameters" Sub-Registry within the "Session

Initiation Protocol (SIP) Parameters" Registry:

Parameter Name   Predefined Values   Reference

--------------   -----------------   ---------

transport        Yes                 [RFC3261][TBD: this document]

Baz Castillo, et al.      Expires May 10, 2013                 [Page 16]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

10.4.  Header Fields Sub-Registry

This specification requests IANA to add a reference to this document

under the "Header Fields" Sub-Registry within the "Session Initiation

Protocol (SIP) Parameters" Registry:

Header Name   compact   Reference

-----------   -------   ---------

Via           v         [RFC3261][TBD: this document]

10.5.  Header Field Parameters and Parameter Values Sub-Registry

This specification requests IANA to add a reference to this document

under the "Header Field Parameters and Parameter Values" Sub-Registry

within the "Session Initiation Protocol (SIP) Parameters" Registry:

Predefined

Header Field  Parameter Name  Values  Reference

------------  --------------  ------  ---------

Via           received        No      [RFC3261][TBD: this document]

11.  Acknowledgements

Special thanks to the following people who participated in

discussions on the SIPCORE and RTCWEB WG mailing lists and

contributed ideas and/or provided detailed reviews (the list is

likely to be incomplete): Hadriel Kaplan, Paul Kyzivat, Adam Roach,

Ranjit Avasarala, Xavier Marjou, Nataraju A. B.

Special thanks to Alan Johnston, Christer Holmberg and Salvatore

Loreto for their full reviews, and also to Saul Ibarra Corretge for

his contribution and suggestions.

Special thanks to Kevin P. Fleming for his complete grammatical

review along with suggestions, comments and improvements.

12.  References

12.1.  Normative References

[RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,

A., Peterson, J., Sparks, R., Handley, M., and E.

Schooler, "SIP: Session Initiation Protocol", RFC 3261,

Baz Castillo, et al.      Expires May 10, 2013                 [Page 17]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

June 2002.

[RFC3263]  Rosenberg, J. and H. Schulzrinne, "Session Initiation

Protocol (SIP): Locating SIP Servers", RFC 3263,

June 2002.

[RFC3403]  Mealling, M., "Dynamic Delegation Discovery System (DDDS)

Part Three: The Domain Name System (DNS) Database",

RFC 3403, October 2002.

[RFC5234]  Crocker, D. and P. Overell, "Augmented BNF for Syntax

Specifications: ABNF", STD 68, RFC 5234, January 2008.

[RFC6455]  Fette, I. and A. Melnikov, "The WebSocket Protocol",

RFC 6455, December 2011.

12.2.  Informative References

[RFC2606]  Eastlake, D. and A. Panitz, "Reserved Top Level DNS

Names", BCP 32, RFC 2606, June 1999.

[RFC2616]  Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC2617]  Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,

Leach, P., Luotonen, A., and L. Stewart, "HTTP

Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999.

[RFC3327]  Willis, D. and B. Hoeneisen, "Session Initiation Protocol

(SIP) Extension Header Field for Registering Non-Adjacent

Contacts", RFC 3327, December 2002.

[RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

[RFC4168]  Rosenberg, J., Schulzrinne, H., and G. Camarillo, "The

Stream Control Transmission Protocol (SCTP) as a Transport

for the Session Initiation Protocol (SIP)", RFC 4168,

October 2005.

[RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security

(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[RFC5626]  Jennings, C., Mahy, R., and F. Audet, "Managing Client-

Initiated Connections in the Session Initiation Protocol

Baz Castillo, et al.      Expires May 10, 2013                 [Page 18]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

(SIP)", RFC 5626, October 2009.

[RFC5627]  Rosenberg, J., "Obtaining and Using Globally Routable User

Agent URIs (GRUUs) in the Session Initiation Protocol

(SIP)", RFC 5627, October 2009.

[RFC6223]  Holmberg, C., "Indication of Support for Keep-Alive",

RFC 6223, April 2011.

[RFC6265]  Barth, A., "HTTP State Management Mechanism", RFC 6265,

April 2011.

[WS-API]   W3C and I. Hickson, Ed., "The WebSocket API", May 2012.

Appendix A.  Implementation Guidelines

_This section is non-normative._

Let us assume a scenario in which the users access with their web

browsers (probably behind NAT) an application provided by a server on

an intranet, login by entering their user identifier and credentials,

and retrieve a JavaScript application (along with the HTML)

implementing a SIP WebSocket Client.

Such a SIP stack connects to a given SIP WebSocket Server (an

outbound SIP proxy which also implements classic SIP transports such

as UDP and TCP).  The HTTP GET method request sent by the web browser

for the WebSocket handshake includes a Cookie [RFC6265] header with

the value previously provided by the server after the successful

login procedure.  The Cookie value is then inspected by the WebSocket

server to authorize the connection.  Once the WebSocket connection is

established, the SIP WebSocket Client performs a SIP registration to

a SIP registrar server that is reachable through the proxy.  After

registration, the SIP WebSocket Client and Server exchange SIP

messages as would normally be expected.

This scenario is quite similar to ones in which SIP UAs behind NATs

connect to a proxy and must reuse the same TCP connection for

incoming requests (because they are not directly reachable by the

proxy otherwise).  In both cases, the SIP UAs are only reachable

through the proxy they are connected to.

The SIP Outbound extension [RFC5626] seems an appropriate solution

for this scenario.  Therefore these SIP WebSocket Clients and the SIP

registrar implement both the Outbound and Path [RFC3327] extensions,

and the SIP proxy acts as an Outbound Edge Proxy (as defined in

[RFC5626] section 3.4).

Baz Castillo, et al.      Expires May 10, 2013                 [Page 19]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

SIP WebSocket Clients in this scenario receive incoming SIP requests

via the SIP WebSocket Server they are connected to.  Therefore, in

some call transfer cases the usage of GRUU [RFC5627] (which should be

implemented in both the SIP WebSocket Clients and SIP registrar) is

valuable.

If a REFER request is sent to a third SIP user agent including the

Contact URI of a SIP WebSocket Client as the target in its

Refer-To header field, such a URI will be reachable by the third

SIP UA only if it is a globally routable URI.  GRUU (Globally

Routable User Agent URI) is a solution for those scenarios, and

would cause the incoming request from the third SIP user agent to

be sent to the SIP registrar, which would route the request to the

SIP WebSocket Client via the Outbound Edge Proxy.

A.1.  SIP WebSocket Client Considerations

The JavaScript stack in web browsers does not have the ability to

discover the local transport address used for originating WebSocket

connections.  Therefore the SIP WebSocket Client constructs a domain

name consisting of a random token followed by the ".invalid" top-

level domain name, as stated in [RFC2606], and uses it within its Via

and Contact headers.

The Contact URI provided by SIP UAs requesting (and receiving)

Outbound support is not used for routing requests to those UAs,

thus it is safe to set a random domain in the Contact URI

hostport.

Both the Outbound and GRUU specifications require a SIP UA to include

a Uniform Resource Name (URN) in a "+sip.instance" parameter of the

Contact header they include their SIP REGISTER requests.  The client

device is responsible for generating or collecting a suitable value

for this purpose.

In web browsers it is difficult to generate or collect a suitable

value to be used as a URN value from the browser itself.  This

scenario suggests that value is generated according to [RFC5626]

section 4.1 by the web application running in the browser the

first time it loads the JavaScript SIP stack code, and then it is

stored as a Cookie within the browser.

A.2.  SIP WebSocket Server Considerations

The SIP WebSocket Server in this scenario behaves as a SIP Outbound

Edge Proxy, which involves support for Outbound [RFC5626] and Path

[RFC3327].

Baz Castillo, et al.      Expires May 10, 2013                 [Page 20]

Internet-Draft      WebSocket as a Transport for SIP       November 2012

The proxy performs Loose Routing and remains in the path of dialogs

as specified in [RFC3261].  If it did not do this, in-dialog requests

would fail since SIP WebSocket Clients make use of their SIP

WebSocket Server in order to send and receive SIP messages.

Authors'

Inaki Baz Castillo

Versatica

Jose Luis Millan Villegas

Versatica

Victor Pascual

Acme Packet

Additional Source: Internet Engineering Task force

Show more