2014-07-10

The large regional earthquake (2008 February 21, M = 6.0) with epicentre near Wells, Nevada, occurred within a few hundred kilometres of the High Lava Plains (HLP) seismic experiment stations when the network was near its full deployment (>100 stations with 10–30 km station spacing). The Wells earthquake provides an excellent opportunity to address two questions: What is the effect of small epicentral distances on surface-wave analyses at periods that are used in the analysis of teleseisms? Can one take advantage of a high-density seismic network to obtain improved phase-velocity maps? As small epicentral distances may introduce systematic errors in the surface-wave analysis for longer periods, we test for such effects by generating synthetic waveforms at locations for all regional-distance stations recording the Wells earthquake. Analysis of the synthetics suggests that our surface-waves analyses can be applied for the Wells earthquake up to periods of ~50 s. Applying the same method to data, we estimate two-station Rayleigh-wave fundamental-mode phase-velocities at selected periods and, for each acceptable path, assign the calculated phase velocity to the geographic location of the centre of the path. We contour the phase velocities for all path centres using a local gridding algorithm. The resulting maps for the Wells earthquake have well-constrained phase velocities up to 40–50 s period and allow us to see phase-velocity gradients not observed in earlier studies that used data from teleseisms or ambient noise tomography.

Show more